L(s) = 1 | + (−1.29 + 0.579i)2-s + (0.597 + 2.03i)3-s + (1.32 − 1.49i)4-s + (−1.54 + 2.40i)5-s + (−1.94 − 2.27i)6-s + (−0.249 − 1.73i)7-s + (−0.847 + 2.69i)8-s + (−1.25 + 0.806i)9-s + (0.599 − 3.99i)10-s + (−0.620 + 1.35i)11-s + (3.83 + 1.80i)12-s + (−0.727 + 5.05i)13-s + (1.32 + 2.09i)14-s + (−5.80 − 1.70i)15-s + (−0.470 − 3.97i)16-s + (4.17 − 3.61i)17-s + ⋯ |
L(s) = 1 | + (−0.912 + 0.409i)2-s + (0.344 + 1.17i)3-s + (0.664 − 0.747i)4-s + (−0.690 + 1.07i)5-s + (−0.795 − 0.929i)6-s + (−0.0943 − 0.656i)7-s + (−0.299 + 0.954i)8-s + (−0.418 + 0.268i)9-s + (0.189 − 1.26i)10-s + (−0.187 + 0.409i)11-s + (1.10 + 0.522i)12-s + (−0.201 + 1.40i)13-s + (0.355 + 0.560i)14-s + (−1.49 − 0.440i)15-s + (−0.117 − 0.993i)16-s + (1.01 − 0.877i)17-s + ⋯ |
Λ(s)=(=(92s/2ΓC(s)L(s)(−0.395−0.918i)Λ(2−s)
Λ(s)=(=(92s/2ΓC(s+1/2)L(s)(−0.395−0.918i)Λ(1−s)
Degree: |
2 |
Conductor: |
92
= 22⋅23
|
Sign: |
−0.395−0.918i
|
Analytic conductor: |
0.734623 |
Root analytic conductor: |
0.857101 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ92(19,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 92, ( :1/2), −0.395−0.918i)
|
Particular Values
L(1) |
≈ |
0.371671+0.564842i |
L(21) |
≈ |
0.371671+0.564842i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.29−0.579i)T |
| 23 | 1+(−4.76+0.575i)T |
good | 3 | 1+(−0.597−2.03i)T+(−2.52+1.62i)T2 |
| 5 | 1+(1.54−2.40i)T+(−2.07−4.54i)T2 |
| 7 | 1+(0.249+1.73i)T+(−6.71+1.97i)T2 |
| 11 | 1+(0.620−1.35i)T+(−7.20−8.31i)T2 |
| 13 | 1+(0.727−5.05i)T+(−12.4−3.66i)T2 |
| 17 | 1+(−4.17+3.61i)T+(2.41−16.8i)T2 |
| 19 | 1+(−4.01+4.63i)T+(−2.70−18.8i)T2 |
| 29 | 1+(4.51+5.21i)T+(−4.12+28.7i)T2 |
| 31 | 1+(0.376−1.28i)T+(−26.0−16.7i)T2 |
| 37 | 1+(−1.44−2.25i)T+(−15.3+33.6i)T2 |
| 41 | 1+(0.151+0.0973i)T+(17.0+37.2i)T2 |
| 43 | 1+(3.19−0.936i)T+(36.1−23.2i)T2 |
| 47 | 1+0.713iT−47T2 |
| 53 | 1+(7.04−1.01i)T+(50.8−14.9i)T2 |
| 59 | 1+(9.95+1.43i)T+(56.6+16.6i)T2 |
| 61 | 1+(−3.77+12.8i)T+(−51.3−32.9i)T2 |
| 67 | 1+(1.87+4.10i)T+(−43.8+50.6i)T2 |
| 71 | 1+(9.80−4.47i)T+(46.4−53.6i)T2 |
| 73 | 1+(3.48−4.02i)T+(−10.3−72.2i)T2 |
| 79 | 1+(0.274−1.90i)T+(−75.7−22.2i)T2 |
| 83 | 1+(−11.1+7.16i)T+(34.4−75.4i)T2 |
| 89 | 1+(0.565+1.92i)T+(−74.8+48.1i)T2 |
| 97 | 1+(4.90−7.63i)T+(−40.2−88.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.75509129131818319069842560395, −13.94134275259853294701835663111, −11.64636660078885916281773697447, −10.92953642565772226027915909224, −9.850620287934558267306234356124, −9.236932284100426323623265629730, −7.53235755593215071199129604199, −6.88322120560703692243302112349, −4.76733977193908491006338369824, −3.15886656884033572209630736201,
1.22580483711375761620590504139, 3.20796711091308429044459808791, 5.68557289030257547513613316641, 7.56056689712165755404905975735, 8.058585753060439281451290669475, 8.999774624009873796776269689379, 10.44824352195829587557608324598, 11.94836156969920890003918364394, 12.53563950388978168895523634928, 13.12706508367529127008121375716