L(s) = 1 | + (1.14 + 0.830i)2-s + (−0.0248 − 0.0847i)3-s + (0.621 + 1.90i)4-s + (−1.32 + 2.06i)5-s + (0.0418 − 0.117i)6-s + (−0.647 − 4.50i)7-s + (−0.865 + 2.69i)8-s + (2.51 − 1.61i)9-s + (−3.23 + 1.26i)10-s + (−0.477 + 1.04i)11-s + (0.145 − 0.0999i)12-s + (0.686 − 4.77i)13-s + (2.99 − 5.69i)14-s + (0.208 + 0.0611i)15-s + (−3.22 + 2.36i)16-s + (−2.34 + 2.03i)17-s + ⋯ |
L(s) = 1 | + (0.809 + 0.586i)2-s + (−0.0143 − 0.0489i)3-s + (0.310 + 0.950i)4-s + (−0.594 + 0.924i)5-s + (0.0170 − 0.0480i)6-s + (−0.244 − 1.70i)7-s + (−0.306 + 0.951i)8-s + (0.839 − 0.539i)9-s + (−1.02 + 0.399i)10-s + (−0.144 + 0.315i)11-s + (0.0420 − 0.0288i)12-s + (0.190 − 1.32i)13-s + (0.801 − 1.52i)14-s + (0.0537 + 0.0157i)15-s + (−0.806 + 0.591i)16-s + (−0.569 + 0.493i)17-s + ⋯ |
Λ(s)=(=(92s/2ΓC(s)L(s)(0.623−0.782i)Λ(2−s)
Λ(s)=(=(92s/2ΓC(s+1/2)L(s)(0.623−0.782i)Λ(1−s)
Degree: |
2 |
Conductor: |
92
= 22⋅23
|
Sign: |
0.623−0.782i
|
Analytic conductor: |
0.734623 |
Root analytic conductor: |
0.857101 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ92(19,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 92, ( :1/2), 0.623−0.782i)
|
Particular Values
L(1) |
≈ |
1.21155+0.583918i |
L(21) |
≈ |
1.21155+0.583918i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.14−0.830i)T |
| 23 | 1+(−2.00+4.35i)T |
good | 3 | 1+(0.0248+0.0847i)T+(−2.52+1.62i)T2 |
| 5 | 1+(1.32−2.06i)T+(−2.07−4.54i)T2 |
| 7 | 1+(0.647+4.50i)T+(−6.71+1.97i)T2 |
| 11 | 1+(0.477−1.04i)T+(−7.20−8.31i)T2 |
| 13 | 1+(−0.686+4.77i)T+(−12.4−3.66i)T2 |
| 17 | 1+(2.34−2.03i)T+(2.41−16.8i)T2 |
| 19 | 1+(4.57−5.27i)T+(−2.70−18.8i)T2 |
| 29 | 1+(−0.809−0.934i)T+(−4.12+28.7i)T2 |
| 31 | 1+(0.611−2.08i)T+(−26.0−16.7i)T2 |
| 37 | 1+(−1.13−1.76i)T+(−15.3+33.6i)T2 |
| 41 | 1+(1.45+0.937i)T+(17.0+37.2i)T2 |
| 43 | 1+(−1.97+0.578i)T+(36.1−23.2i)T2 |
| 47 | 1−8.32iT−47T2 |
| 53 | 1+(−0.322+0.0464i)T+(50.8−14.9i)T2 |
| 59 | 1+(−5.07−0.730i)T+(56.6+16.6i)T2 |
| 61 | 1+(−2.66+9.07i)T+(−51.3−32.9i)T2 |
| 67 | 1+(−2.78−6.09i)T+(−43.8+50.6i)T2 |
| 71 | 1+(1.45−0.663i)T+(46.4−53.6i)T2 |
| 73 | 1+(−2.38+2.75i)T+(−10.3−72.2i)T2 |
| 79 | 1+(−0.774+5.38i)T+(−75.7−22.2i)T2 |
| 83 | 1+(−3.34+2.15i)T+(34.4−75.4i)T2 |
| 89 | 1+(2.20+7.50i)T+(−74.8+48.1i)T2 |
| 97 | 1+(0.772−1.20i)T+(−40.2−88.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.40702145240037234050440405854, −13.11531542495242516488648688060, −12.55881718023319049808956888252, −10.88847416304262653711562548782, −10.31286441760135226011677586580, −8.090076720358971355399272341832, −7.18029446485271097771651512451, −6.41138801803906228999363086380, −4.32865237832904758823152003567, −3.44174039805917484702738599173,
2.26101115351629662376998210342, 4.29158992518998996451451783830, 5.26686916973626460989585716452, 6.74037719191339199653479305395, 8.697331014117982499615012384942, 9.455387229300003226278081356439, 11.16354894927142264315821887241, 11.89251018508664892926931795693, 12.81813550611695868185251295481, 13.54679911234859327530392380309