Properties

Label 2-920-1.1-c1-0-0
Degree 22
Conductor 920920
Sign 11
Analytic cond. 7.346237.34623
Root an. cond. 2.710392.71039
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.36·3-s − 5-s − 1.90·7-s + 8.28·9-s − 5.48·11-s − 1.04·13-s + 3.36·15-s − 6.74·17-s − 1.55·19-s + 6.40·21-s − 23-s + 25-s − 17.7·27-s − 3.38·29-s + 10.9·31-s + 18.4·33-s + 1.90·35-s + 5.26·37-s + 3.52·39-s + 6.09·41-s − 8.28·45-s + 0.403·47-s − 3.36·49-s + 22.6·51-s + 5.88·53-s + 5.48·55-s + 5.20·57-s + ⋯
L(s)  = 1  − 1.93·3-s − 0.447·5-s − 0.720·7-s + 2.76·9-s − 1.65·11-s − 0.291·13-s + 0.867·15-s − 1.63·17-s − 0.355·19-s + 1.39·21-s − 0.208·23-s + 0.200·25-s − 3.42·27-s − 0.628·29-s + 1.96·31-s + 3.20·33-s + 0.322·35-s + 0.865·37-s + 0.564·39-s + 0.952·41-s − 1.23·45-s + 0.0589·47-s − 0.480·49-s + 3.17·51-s + 0.808·53-s + 0.738·55-s + 0.690·57-s + ⋯

Functional equation

Λ(s)=(920s/2ΓC(s)L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}
Λ(s)=(920s/2ΓC(s+1/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 920920    =    235232^{3} \cdot 5 \cdot 23
Sign: 11
Analytic conductor: 7.346237.34623
Root analytic conductor: 2.710392.71039
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 00
Selberg data: (2, 920, ( :1/2), 1)(2,\ 920,\ (\ :1/2),\ 1)

Particular Values

L(1)L(1) \approx 0.32345219490.3234521949
L(12)L(\frac12) \approx 0.32345219490.3234521949
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1+T 1 + T
23 1+T 1 + T
good3 1+3.36T+3T2 1 + 3.36T + 3T^{2}
7 1+1.90T+7T2 1 + 1.90T + 7T^{2}
11 1+5.48T+11T2 1 + 5.48T + 11T^{2}
13 1+1.04T+13T2 1 + 1.04T + 13T^{2}
17 1+6.74T+17T2 1 + 6.74T + 17T^{2}
19 1+1.55T+19T2 1 + 1.55T + 19T^{2}
29 1+3.38T+29T2 1 + 3.38T + 29T^{2}
31 110.9T+31T2 1 - 10.9T + 31T^{2}
37 15.26T+37T2 1 - 5.26T + 37T^{2}
41 16.09T+41T2 1 - 6.09T + 41T^{2}
43 1+43T2 1 + 43T^{2}
47 10.403T+47T2 1 - 0.403T + 47T^{2}
53 15.88T+53T2 1 - 5.88T + 53T^{2}
59 19.60T+59T2 1 - 9.60T + 59T^{2}
61 1+7.09T+61T2 1 + 7.09T + 61T^{2}
67 113.7T+67T2 1 - 13.7T + 67T^{2}
71 10.478T+71T2 1 - 0.478T + 71T^{2}
73 12.40T+73T2 1 - 2.40T + 73T^{2}
79 1+4.24T+79T2 1 + 4.24T + 79T^{2}
83 1+11.2T+83T2 1 + 11.2T + 83T^{2}
89 14.90T+89T2 1 - 4.90T + 89T^{2}
97 1+12.3T+97T2 1 + 12.3T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.27905719461741572280548668029, −9.648342835124908143113543712282, −8.233672174855916789097740460902, −7.25058982593354846018010648792, −6.53570011021672983483158156984, −5.78435942644454397470998341229, −4.85908066039913024524844651517, −4.18747621777777804525866432690, −2.46885070526343660016953435920, −0.46866625083670960814790667256, 0.46866625083670960814790667256, 2.46885070526343660016953435920, 4.18747621777777804525866432690, 4.85908066039913024524844651517, 5.78435942644454397470998341229, 6.53570011021672983483158156984, 7.25058982593354846018010648792, 8.233672174855916789097740460902, 9.648342835124908143113543712282, 10.27905719461741572280548668029

Graph of the ZZ-function along the critical line