L(s) = 1 | − 3.36·3-s − 1.90·7-s + 8.28·9-s + 5.48·11-s + 1.04·13-s + 6.74·17-s + 1.55·19-s + 6.40·21-s − 23-s − 17.7·27-s − 3.38·29-s − 10.9·31-s − 18.4·33-s − 5.26·37-s − 3.52·39-s + 6.09·41-s + 0.403·47-s − 3.36·49-s − 22.6·51-s − 5.88·53-s − 5.20·57-s − 9.60·59-s − 7.09·61-s − 15.8·63-s + 13.7·67-s + 3.36·69-s − 0.478·71-s + ⋯ |
L(s) = 1 | − 1.93·3-s − 0.720·7-s + 2.76·9-s + 1.65·11-s + 0.291·13-s + 1.63·17-s + 0.355·19-s + 1.39·21-s − 0.208·23-s − 3.42·27-s − 0.628·29-s − 1.96·31-s − 3.20·33-s − 0.865·37-s − 0.564·39-s + 0.952·41-s + 0.0589·47-s − 0.480·49-s − 3.17·51-s − 0.808·53-s − 0.690·57-s − 1.24·59-s − 0.908·61-s − 1.99·63-s + 1.68·67-s + 0.404·69-s − 0.0568·71-s + ⋯ |
Λ(s)=(=(9200s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(9200s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 23 | 1+T |
good | 3 | 1+3.36T+3T2 |
| 7 | 1+1.90T+7T2 |
| 11 | 1−5.48T+11T2 |
| 13 | 1−1.04T+13T2 |
| 17 | 1−6.74T+17T2 |
| 19 | 1−1.55T+19T2 |
| 29 | 1+3.38T+29T2 |
| 31 | 1+10.9T+31T2 |
| 37 | 1+5.26T+37T2 |
| 41 | 1−6.09T+41T2 |
| 43 | 1+43T2 |
| 47 | 1−0.403T+47T2 |
| 53 | 1+5.88T+53T2 |
| 59 | 1+9.60T+59T2 |
| 61 | 1+7.09T+61T2 |
| 67 | 1−13.7T+67T2 |
| 71 | 1+0.478T+71T2 |
| 73 | 1+2.40T+73T2 |
| 79 | 1−4.24T+79T2 |
| 83 | 1+11.2T+83T2 |
| 89 | 1−4.90T+89T2 |
| 97 | 1−12.3T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.21728027149189086301873797378, −6.47965577836181310331533219791, −6.01224322772566753564456047110, −5.51930549596196555428905770723, −4.77316857366563257395799156557, −3.80123525488652340368685471074, −3.49282828780944601599920988642, −1.68188144223618512726653471256, −1.09893989760303568293088236461, 0,
1.09893989760303568293088236461, 1.68188144223618512726653471256, 3.49282828780944601599920988642, 3.80123525488652340368685471074, 4.77316857366563257395799156557, 5.51930549596196555428905770723, 6.01224322772566753564456047110, 6.47965577836181310331533219791, 7.21728027149189086301873797378