L(s) = 1 | − 7-s − 3·9-s + 11-s + 13-s + 5·19-s − 23-s − 5·29-s + 2·31-s − 4·37-s − 5·41-s + 9·43-s + 6·47-s − 6·49-s + 2·53-s − 8·59-s − 8·61-s + 3·63-s − 8·67-s + 10·71-s − 3·73-s − 77-s + 3·79-s + 9·81-s − 3·83-s + 10·89-s − 91-s − 2·97-s + ⋯ |
L(s) = 1 | − 0.377·7-s − 9-s + 0.301·11-s + 0.277·13-s + 1.14·19-s − 0.208·23-s − 0.928·29-s + 0.359·31-s − 0.657·37-s − 0.780·41-s + 1.37·43-s + 0.875·47-s − 6/7·49-s + 0.274·53-s − 1.04·59-s − 1.02·61-s + 0.377·63-s − 0.977·67-s + 1.18·71-s − 0.351·73-s − 0.113·77-s + 0.337·79-s + 81-s − 0.329·83-s + 1.05·89-s − 0.104·91-s − 0.203·97-s + ⋯ |
Λ(s)=(=(9200s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(9200s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 23 | 1+T |
good | 3 | 1+pT2 |
| 7 | 1+T+pT2 |
| 11 | 1−T+pT2 |
| 13 | 1−T+pT2 |
| 17 | 1+pT2 |
| 19 | 1−5T+pT2 |
| 29 | 1+5T+pT2 |
| 31 | 1−2T+pT2 |
| 37 | 1+4T+pT2 |
| 41 | 1+5T+pT2 |
| 43 | 1−9T+pT2 |
| 47 | 1−6T+pT2 |
| 53 | 1−2T+pT2 |
| 59 | 1+8T+pT2 |
| 61 | 1+8T+pT2 |
| 67 | 1+8T+pT2 |
| 71 | 1−10T+pT2 |
| 73 | 1+3T+pT2 |
| 79 | 1−3T+pT2 |
| 83 | 1+3T+pT2 |
| 89 | 1−10T+pT2 |
| 97 | 1+2T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.47876576093360472676670536725, −6.61942238595646901909970429403, −5.97125616564562654158881484661, −5.44580395342077403040036316979, −4.63593629688090053857005431353, −3.64515207426874340591598364572, −3.15860055911463056565728903625, −2.26278994405622971296924013012, −1.18013169987124158680840935437, 0,
1.18013169987124158680840935437, 2.26278994405622971296924013012, 3.15860055911463056565728903625, 3.64515207426874340591598364572, 4.63593629688090053857005431353, 5.44580395342077403040036316979, 5.97125616564562654158881484661, 6.61942238595646901909970429403, 7.47876576093360472676670536725