Properties

Label 2-9248-1.1-c1-0-139
Degree $2$
Conductor $9248$
Sign $-1$
Analytic cond. $73.8456$
Root an. cond. $8.59334$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.936·3-s − 0.936·7-s − 2.12·9-s − 5.73·11-s + 1.12·13-s + 0.876·21-s + 9.47·23-s − 5·25-s + 4.79·27-s + 7.60·31-s + 5.36·33-s − 1.05·39-s − 6.12·49-s + 8.24·53-s + 1.98·63-s − 8.87·69-s + 14.2·71-s + 4.68·75-s + 5.36·77-s + 13.2·79-s + 1.87·81-s − 7.36·89-s − 1.05·91-s − 7.12·93-s + 12.1·99-s − 19.3·101-s + 16.1·107-s + ⋯
L(s)  = 1  − 0.540·3-s − 0.353·7-s − 0.707·9-s − 1.72·11-s + 0.311·13-s + 0.191·21-s + 1.97·23-s − 25-s + 0.923·27-s + 1.36·31-s + 0.934·33-s − 0.168·39-s − 0.874·49-s + 1.13·53-s + 0.250·63-s − 1.06·69-s + 1.69·71-s + 0.540·75-s + 0.611·77-s + 1.48·79-s + 0.208·81-s − 0.781·89-s − 0.110·91-s − 0.738·93-s + 1.22·99-s − 1.92·101-s + 1.56·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9248 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9248 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9248\)    =    \(2^{5} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(73.8456\)
Root analytic conductor: \(8.59334\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9248,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
17 \( 1 \)
good3 \( 1 + 0.936T + 3T^{2} \)
5 \( 1 + 5T^{2} \)
7 \( 1 + 0.936T + 7T^{2} \)
11 \( 1 + 5.73T + 11T^{2} \)
13 \( 1 - 1.12T + 13T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 - 9.47T + 23T^{2} \)
29 \( 1 + 29T^{2} \)
31 \( 1 - 7.60T + 31T^{2} \)
37 \( 1 + 37T^{2} \)
41 \( 1 + 41T^{2} \)
43 \( 1 + 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 - 8.24T + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 + 61T^{2} \)
67 \( 1 + 67T^{2} \)
71 \( 1 - 14.2T + 71T^{2} \)
73 \( 1 + 73T^{2} \)
79 \( 1 - 13.2T + 79T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 + 7.36T + 89T^{2} \)
97 \( 1 + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.37826069202933612184872296737, −6.57166384321075983517455869964, −6.01225759760212278224065525675, −5.12424917598310310417686738549, −5.01648970852463866293968542496, −3.77097142506627524507116589954, −2.89997270936862979540674669358, −2.42909922368237619991298575715, −0.980297091292653286074102024689, 0, 0.980297091292653286074102024689, 2.42909922368237619991298575715, 2.89997270936862979540674669358, 3.77097142506627524507116589954, 5.01648970852463866293968542496, 5.12424917598310310417686738549, 6.01225759760212278224065525675, 6.57166384321075983517455869964, 7.37826069202933612184872296737

Graph of the $Z$-function along the critical line