L(s) = 1 | + 5-s + 2·7-s − 3·9-s + 2·11-s + 6·13-s + 2·17-s − 2·19-s + 6·23-s + 25-s + 29-s + 6·31-s + 2·35-s + 2·37-s + 10·41-s − 8·43-s − 3·45-s + 4·47-s − 3·49-s − 10·53-s + 2·55-s + 8·59-s − 10·61-s − 6·63-s + 6·65-s + 2·67-s − 4·71-s + 6·73-s + ⋯ |
L(s) = 1 | + 0.447·5-s + 0.755·7-s − 9-s + 0.603·11-s + 1.66·13-s + 0.485·17-s − 0.458·19-s + 1.25·23-s + 1/5·25-s + 0.185·29-s + 1.07·31-s + 0.338·35-s + 0.328·37-s + 1.56·41-s − 1.21·43-s − 0.447·45-s + 0.583·47-s − 3/7·49-s − 1.37·53-s + 0.269·55-s + 1.04·59-s − 1.28·61-s − 0.755·63-s + 0.744·65-s + 0.244·67-s − 0.474·71-s + 0.702·73-s + ⋯ |
Λ(s)=(=(9280s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(9280s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.958054973 |
L(21) |
≈ |
2.958054973 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1−T |
| 29 | 1−T |
good | 3 | 1+pT2 |
| 7 | 1−2T+pT2 |
| 11 | 1−2T+pT2 |
| 13 | 1−6T+pT2 |
| 17 | 1−2T+pT2 |
| 19 | 1+2T+pT2 |
| 23 | 1−6T+pT2 |
| 31 | 1−6T+pT2 |
| 37 | 1−2T+pT2 |
| 41 | 1−10T+pT2 |
| 43 | 1+8T+pT2 |
| 47 | 1−4T+pT2 |
| 53 | 1+10T+pT2 |
| 59 | 1−8T+pT2 |
| 61 | 1+10T+pT2 |
| 67 | 1−2T+pT2 |
| 71 | 1+4T+pT2 |
| 73 | 1−6T+pT2 |
| 79 | 1−10T+pT2 |
| 83 | 1+6T+pT2 |
| 89 | 1+6T+pT2 |
| 97 | 1−6T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.052840808513428859574580540510, −6.85129093115692814292716553751, −6.28660003535746607565691278176, −5.74840797572829895528228917775, −5.00639051128266281017919416554, −4.24721196488992332309824332666, −3.36994472218581743273921077000, −2.68401564538192621761486313487, −1.58564699459202598374088008614, −0.904981875417245622946714514503,
0.904981875417245622946714514503, 1.58564699459202598374088008614, 2.68401564538192621761486313487, 3.36994472218581743273921077000, 4.24721196488992332309824332666, 5.00639051128266281017919416554, 5.74840797572829895528228917775, 6.28660003535746607565691278176, 6.85129093115692814292716553751, 8.052840808513428859574580540510