Properties

Label 2-9280-1.1-c1-0-106
Degree $2$
Conductor $9280$
Sign $1$
Analytic cond. $74.1011$
Root an. cond. $8.60820$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.11·3-s − 5-s − 0.964·7-s + 6.71·9-s − 2.75·11-s + 3.87·13-s − 3.11·15-s + 2.11·17-s + 5.82·19-s − 3.00·21-s − 2.04·23-s + 25-s + 11.5·27-s + 29-s + 2.96·31-s − 8.58·33-s + 0.964·35-s − 4.75·37-s + 12.0·39-s + 11.3·41-s + 3.27·43-s − 6.71·45-s + 0.405·47-s − 6.07·49-s + 6.58·51-s − 6.98·53-s + 2.75·55-s + ⋯
L(s)  = 1  + 1.79·3-s − 0.447·5-s − 0.364·7-s + 2.23·9-s − 0.830·11-s + 1.07·13-s − 0.804·15-s + 0.512·17-s + 1.33·19-s − 0.655·21-s − 0.425·23-s + 0.200·25-s + 2.23·27-s + 0.185·29-s + 0.532·31-s − 1.49·33-s + 0.162·35-s − 0.781·37-s + 1.93·39-s + 1.76·41-s + 0.498·43-s − 1.00·45-s + 0.0591·47-s − 0.867·49-s + 0.921·51-s − 0.960·53-s + 0.371·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9280\)    =    \(2^{6} \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(74.1011\)
Root analytic conductor: \(8.60820\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9280,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.154411251\)
\(L(\frac12)\) \(\approx\) \(4.154411251\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
29 \( 1 - T \)
good3 \( 1 - 3.11T + 3T^{2} \)
7 \( 1 + 0.964T + 7T^{2} \)
11 \( 1 + 2.75T + 11T^{2} \)
13 \( 1 - 3.87T + 13T^{2} \)
17 \( 1 - 2.11T + 17T^{2} \)
19 \( 1 - 5.82T + 19T^{2} \)
23 \( 1 + 2.04T + 23T^{2} \)
31 \( 1 - 2.96T + 31T^{2} \)
37 \( 1 + 4.75T + 37T^{2} \)
41 \( 1 - 11.3T + 41T^{2} \)
43 \( 1 - 3.27T + 43T^{2} \)
47 \( 1 - 0.405T + 47T^{2} \)
53 \( 1 + 6.98T + 53T^{2} \)
59 \( 1 + 0.364T + 59T^{2} \)
61 \( 1 + 12.1T + 61T^{2} \)
67 \( 1 + 1.48T + 67T^{2} \)
71 \( 1 - 14.5T + 71T^{2} \)
73 \( 1 + 2.16T + 73T^{2} \)
79 \( 1 - 14.1T + 79T^{2} \)
83 \( 1 + 11.3T + 83T^{2} \)
89 \( 1 - 6.08T + 89T^{2} \)
97 \( 1 + 2.31T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.914449463449915514621696128672, −7.37429492930043605401465481194, −6.52764256821701076314579669704, −5.66835177280226087181888166645, −4.71171534632721233157341114134, −3.94100656820025680503605199694, −3.23842939970030489528123864160, −2.92331481402841027094978594330, −1.90277622373425806244971794849, −0.926486399825057779221988889953, 0.926486399825057779221988889953, 1.90277622373425806244971794849, 2.92331481402841027094978594330, 3.23842939970030489528123864160, 3.94100656820025680503605199694, 4.71171534632721233157341114134, 5.66835177280226087181888166645, 6.52764256821701076314579669704, 7.37429492930043605401465481194, 7.914449463449915514621696128672

Graph of the $Z$-function along the critical line