L(s) = 1 | + 3.11·3-s − 5-s − 0.964·7-s + 6.71·9-s − 2.75·11-s + 3.87·13-s − 3.11·15-s + 2.11·17-s + 5.82·19-s − 3.00·21-s − 2.04·23-s + 25-s + 11.5·27-s + 29-s + 2.96·31-s − 8.58·33-s + 0.964·35-s − 4.75·37-s + 12.0·39-s + 11.3·41-s + 3.27·43-s − 6.71·45-s + 0.405·47-s − 6.07·49-s + 6.58·51-s − 6.98·53-s + 2.75·55-s + ⋯ |
L(s) = 1 | + 1.79·3-s − 0.447·5-s − 0.364·7-s + 2.23·9-s − 0.830·11-s + 1.07·13-s − 0.804·15-s + 0.512·17-s + 1.33·19-s − 0.655·21-s − 0.425·23-s + 0.200·25-s + 2.23·27-s + 0.185·29-s + 0.532·31-s − 1.49·33-s + 0.162·35-s − 0.781·37-s + 1.93·39-s + 1.76·41-s + 0.498·43-s − 1.00·45-s + 0.0591·47-s − 0.867·49-s + 0.921·51-s − 0.960·53-s + 0.371·55-s + ⋯ |
Λ(s)=(=(9280s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(9280s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
4.154411251 |
L(21) |
≈ |
4.154411251 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+T |
| 29 | 1−T |
good | 3 | 1−3.11T+3T2 |
| 7 | 1+0.964T+7T2 |
| 11 | 1+2.75T+11T2 |
| 13 | 1−3.87T+13T2 |
| 17 | 1−2.11T+17T2 |
| 19 | 1−5.82T+19T2 |
| 23 | 1+2.04T+23T2 |
| 31 | 1−2.96T+31T2 |
| 37 | 1+4.75T+37T2 |
| 41 | 1−11.3T+41T2 |
| 43 | 1−3.27T+43T2 |
| 47 | 1−0.405T+47T2 |
| 53 | 1+6.98T+53T2 |
| 59 | 1+0.364T+59T2 |
| 61 | 1+12.1T+61T2 |
| 67 | 1+1.48T+67T2 |
| 71 | 1−14.5T+71T2 |
| 73 | 1+2.16T+73T2 |
| 79 | 1−14.1T+79T2 |
| 83 | 1+11.3T+83T2 |
| 89 | 1−6.08T+89T2 |
| 97 | 1+2.31T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.914449463449915514621696128672, −7.37429492930043605401465481194, −6.52764256821701076314579669704, −5.66835177280226087181888166645, −4.71171534632721233157341114134, −3.94100656820025680503605199694, −3.23842939970030489528123864160, −2.92331481402841027094978594330, −1.90277622373425806244971794849, −0.926486399825057779221988889953,
0.926486399825057779221988889953, 1.90277622373425806244971794849, 2.92331481402841027094978594330, 3.23842939970030489528123864160, 3.94100656820025680503605199694, 4.71171534632721233157341114134, 5.66835177280226087181888166645, 6.52764256821701076314579669704, 7.37429492930043605401465481194, 7.914449463449915514621696128672