L(s) = 1 | − 1.35·3-s + 5-s − 0.648·7-s − 1.17·9-s − 3.35·11-s − 4.17·13-s − 1.35·15-s + 4.82·17-s − 6.82·19-s + 0.876·21-s + 5.52·23-s + 25-s + 5.64·27-s + 29-s − 2.82·31-s + 4.53·33-s − 0.648·35-s + 10.2·37-s + 5.64·39-s + 8.17·41-s + 5.69·43-s − 1.17·45-s − 2.64·47-s − 6.58·49-s − 6.51·51-s + 2.87·53-s − 3.35·55-s + ⋯ |
L(s) = 1 | − 0.780·3-s + 0.447·5-s − 0.244·7-s − 0.390·9-s − 1.01·11-s − 1.15·13-s − 0.349·15-s + 1.16·17-s − 1.56·19-s + 0.191·21-s + 1.15·23-s + 0.200·25-s + 1.08·27-s + 0.185·29-s − 0.506·31-s + 0.788·33-s − 0.109·35-s + 1.68·37-s + 0.903·39-s + 1.27·41-s + 0.868·43-s − 0.174·45-s − 0.386·47-s − 0.940·49-s − 0.912·51-s + 0.395·53-s − 0.451·55-s + ⋯ |
Λ(s)=(=(9280s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(9280s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1−T |
| 29 | 1−T |
good | 3 | 1+1.35T+3T2 |
| 7 | 1+0.648T+7T2 |
| 11 | 1+3.35T+11T2 |
| 13 | 1+4.17T+13T2 |
| 17 | 1−4.82T+17T2 |
| 19 | 1+6.82T+19T2 |
| 23 | 1−5.52T+23T2 |
| 31 | 1+2.82T+31T2 |
| 37 | 1−10.2T+37T2 |
| 41 | 1−8.17T+41T2 |
| 43 | 1−5.69T+43T2 |
| 47 | 1+2.64T+47T2 |
| 53 | 1−2.87T+53T2 |
| 59 | 1−13.2T+59T2 |
| 61 | 1−1.12T+61T2 |
| 67 | 1+1.52T+67T2 |
| 71 | 1+8.87T+71T2 |
| 73 | 1−9.69T+73T2 |
| 79 | 1−8.99T+79T2 |
| 83 | 1+1.94T+83T2 |
| 89 | 1−17.0T+89T2 |
| 97 | 1+13.3T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.36474845551844160442939395196, −6.52184939675738630649343147919, −5.98705323828913852190704659362, −5.26531430905038674971687544940, −4.91043433286482236565443491363, −3.92986168420535948073313371013, −2.70424092354768665629015235224, −2.47429003784572484998331690856, −0.999637294841537897974002833620, 0,
0.999637294841537897974002833620, 2.47429003784572484998331690856, 2.70424092354768665629015235224, 3.92986168420535948073313371013, 4.91043433286482236565443491363, 5.26531430905038674971687544940, 5.98705323828913852190704659362, 6.52184939675738630649343147919, 7.36474845551844160442939395196