Properties

Label 2-9280-1.1-c1-0-125
Degree $2$
Conductor $9280$
Sign $-1$
Analytic cond. $74.1011$
Root an. cond. $8.60820$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.93·3-s + 5-s − 1.25·7-s + 5.61·9-s − 2.50·11-s + 2.93·13-s − 2.93·15-s + 7.12·17-s − 4.85·19-s + 3.68·21-s + 1.57·23-s + 25-s − 7.68·27-s + 29-s − 4.61·31-s + 7.36·33-s − 1.25·35-s − 9.87·37-s − 8.61·39-s + 0.508·41-s − 1.38·43-s + 5.61·45-s − 1.36·47-s − 5.42·49-s − 20.9·51-s − 2.23·53-s − 2.50·55-s + ⋯
L(s)  = 1  − 1.69·3-s + 0.447·5-s − 0.474·7-s + 1.87·9-s − 0.756·11-s + 0.814·13-s − 0.757·15-s + 1.72·17-s − 1.11·19-s + 0.803·21-s + 0.327·23-s + 0.200·25-s − 1.47·27-s + 0.185·29-s − 0.829·31-s + 1.28·33-s − 0.211·35-s − 1.62·37-s − 1.37·39-s + 0.0793·41-s − 0.210·43-s + 0.837·45-s − 0.198·47-s − 0.775·49-s − 2.92·51-s − 0.307·53-s − 0.338·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9280\)    =    \(2^{6} \cdot 5 \cdot 29\)
Sign: $-1$
Analytic conductor: \(74.1011\)
Root analytic conductor: \(8.60820\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9280,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
29 \( 1 - T \)
good3 \( 1 + 2.93T + 3T^{2} \)
7 \( 1 + 1.25T + 7T^{2} \)
11 \( 1 + 2.50T + 11T^{2} \)
13 \( 1 - 2.93T + 13T^{2} \)
17 \( 1 - 7.12T + 17T^{2} \)
19 \( 1 + 4.85T + 19T^{2} \)
23 \( 1 - 1.57T + 23T^{2} \)
31 \( 1 + 4.61T + 31T^{2} \)
37 \( 1 + 9.87T + 37T^{2} \)
41 \( 1 - 0.508T + 41T^{2} \)
43 \( 1 + 1.38T + 43T^{2} \)
47 \( 1 + 1.36T + 47T^{2} \)
53 \( 1 + 2.23T + 53T^{2} \)
59 \( 1 - 11.6T + 59T^{2} \)
61 \( 1 + 3.41T + 61T^{2} \)
67 \( 1 - 6.72T + 67T^{2} \)
71 \( 1 - 14.7T + 71T^{2} \)
73 \( 1 + 12.3T + 73T^{2} \)
79 \( 1 - 3.91T + 79T^{2} \)
83 \( 1 - 1.87T + 83T^{2} \)
89 \( 1 + 11.8T + 89T^{2} \)
97 \( 1 - 5.31T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.06931705533546717400160870790, −6.56311255125387578210757106787, −5.91209017111861440109587376267, −5.40638335675322878297960812709, −4.94924088415403238007292198714, −3.90830726588725094383852845775, −3.17684655045528539998396203416, −1.91974995522407848572741257978, −1.01682144007581638035205575672, 0, 1.01682144007581638035205575672, 1.91974995522407848572741257978, 3.17684655045528539998396203416, 3.90830726588725094383852845775, 4.94924088415403238007292198714, 5.40638335675322878297960812709, 5.91209017111861440109587376267, 6.56311255125387578210757106787, 7.06931705533546717400160870790

Graph of the $Z$-function along the critical line