L(s) = 1 | − 2.93·3-s + 5-s − 1.25·7-s + 5.61·9-s − 2.50·11-s + 2.93·13-s − 2.93·15-s + 7.12·17-s − 4.85·19-s + 3.68·21-s + 1.57·23-s + 25-s − 7.68·27-s + 29-s − 4.61·31-s + 7.36·33-s − 1.25·35-s − 9.87·37-s − 8.61·39-s + 0.508·41-s − 1.38·43-s + 5.61·45-s − 1.36·47-s − 5.42·49-s − 20.9·51-s − 2.23·53-s − 2.50·55-s + ⋯ |
L(s) = 1 | − 1.69·3-s + 0.447·5-s − 0.474·7-s + 1.87·9-s − 0.756·11-s + 0.814·13-s − 0.757·15-s + 1.72·17-s − 1.11·19-s + 0.803·21-s + 0.327·23-s + 0.200·25-s − 1.47·27-s + 0.185·29-s − 0.829·31-s + 1.28·33-s − 0.211·35-s − 1.62·37-s − 1.37·39-s + 0.0793·41-s − 0.210·43-s + 0.837·45-s − 0.198·47-s − 0.775·49-s − 2.92·51-s − 0.307·53-s − 0.338·55-s + ⋯ |
Λ(s)=(=(9280s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(9280s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1−T |
| 29 | 1−T |
good | 3 | 1+2.93T+3T2 |
| 7 | 1+1.25T+7T2 |
| 11 | 1+2.50T+11T2 |
| 13 | 1−2.93T+13T2 |
| 17 | 1−7.12T+17T2 |
| 19 | 1+4.85T+19T2 |
| 23 | 1−1.57T+23T2 |
| 31 | 1+4.61T+31T2 |
| 37 | 1+9.87T+37T2 |
| 41 | 1−0.508T+41T2 |
| 43 | 1+1.38T+43T2 |
| 47 | 1+1.36T+47T2 |
| 53 | 1+2.23T+53T2 |
| 59 | 1−11.6T+59T2 |
| 61 | 1+3.41T+61T2 |
| 67 | 1−6.72T+67T2 |
| 71 | 1−14.7T+71T2 |
| 73 | 1+12.3T+73T2 |
| 79 | 1−3.91T+79T2 |
| 83 | 1−1.87T+83T2 |
| 89 | 1+11.8T+89T2 |
| 97 | 1−5.31T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.06931705533546717400160870790, −6.56311255125387578210757106787, −5.91209017111861440109587376267, −5.40638335675322878297960812709, −4.94924088415403238007292198714, −3.90830726588725094383852845775, −3.17684655045528539998396203416, −1.91974995522407848572741257978, −1.01682144007581638035205575672, 0,
1.01682144007581638035205575672, 1.91974995522407848572741257978, 3.17684655045528539998396203416, 3.90830726588725094383852845775, 4.94924088415403238007292198714, 5.40638335675322878297960812709, 5.91209017111861440109587376267, 6.56311255125387578210757106787, 7.06931705533546717400160870790