L(s) = 1 | − 3.11·3-s − 5-s + 0.964·7-s + 6.71·9-s + 2.75·11-s + 3.87·13-s + 3.11·15-s + 2.11·17-s − 5.82·19-s − 3.00·21-s + 2.04·23-s + 25-s − 11.5·27-s + 29-s − 2.96·31-s − 8.58·33-s − 0.964·35-s − 4.75·37-s − 12.0·39-s + 11.3·41-s − 3.27·43-s − 6.71·45-s − 0.405·47-s − 6.07·49-s − 6.58·51-s − 6.98·53-s − 2.75·55-s + ⋯ |
L(s) = 1 | − 1.79·3-s − 0.447·5-s + 0.364·7-s + 2.23·9-s + 0.830·11-s + 1.07·13-s + 0.804·15-s + 0.512·17-s − 1.33·19-s − 0.655·21-s + 0.425·23-s + 0.200·25-s − 2.23·27-s + 0.185·29-s − 0.532·31-s − 1.49·33-s − 0.162·35-s − 0.781·37-s − 1.93·39-s + 1.76·41-s − 0.498·43-s − 1.00·45-s − 0.0591·47-s − 0.867·49-s − 0.921·51-s − 0.960·53-s − 0.371·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + T \) |
| 29 | \( 1 - T \) |
good | 3 | \( 1 + 3.11T + 3T^{2} \) |
| 7 | \( 1 - 0.964T + 7T^{2} \) |
| 11 | \( 1 - 2.75T + 11T^{2} \) |
| 13 | \( 1 - 3.87T + 13T^{2} \) |
| 17 | \( 1 - 2.11T + 17T^{2} \) |
| 19 | \( 1 + 5.82T + 19T^{2} \) |
| 23 | \( 1 - 2.04T + 23T^{2} \) |
| 31 | \( 1 + 2.96T + 31T^{2} \) |
| 37 | \( 1 + 4.75T + 37T^{2} \) |
| 41 | \( 1 - 11.3T + 41T^{2} \) |
| 43 | \( 1 + 3.27T + 43T^{2} \) |
| 47 | \( 1 + 0.405T + 47T^{2} \) |
| 53 | \( 1 + 6.98T + 53T^{2} \) |
| 59 | \( 1 - 0.364T + 59T^{2} \) |
| 61 | \( 1 + 12.1T + 61T^{2} \) |
| 67 | \( 1 - 1.48T + 67T^{2} \) |
| 71 | \( 1 + 14.5T + 71T^{2} \) |
| 73 | \( 1 + 2.16T + 73T^{2} \) |
| 79 | \( 1 + 14.1T + 79T^{2} \) |
| 83 | \( 1 - 11.3T + 83T^{2} \) |
| 89 | \( 1 - 6.08T + 89T^{2} \) |
| 97 | \( 1 + 2.31T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.21877271421536831315912079057, −6.37730040359549048532327623575, −6.18381228982468840347973233190, −5.37904501078952723129570502638, −4.57861697379877133531041107811, −4.15651731799073333759795114886, −3.28676754733318100063694508473, −1.73387420301540504443486642438, −1.08477262332887290881198364515, 0,
1.08477262332887290881198364515, 1.73387420301540504443486642438, 3.28676754733318100063694508473, 4.15651731799073333759795114886, 4.57861697379877133531041107811, 5.37904501078952723129570502638, 6.18381228982468840347973233190, 6.37730040359549048532327623575, 7.21877271421536831315912079057