L(s) = 1 | + (−0.5 − 0.866i)4-s + (−0.5 + 0.866i)5-s + (−0.5 + 0.866i)9-s + (0.5 + 0.866i)11-s + (−0.499 + 0.866i)16-s + (1 + 1.73i)17-s + (0.5 − 0.866i)19-s + 0.999·20-s + (0.5 − 0.866i)23-s + 0.999·36-s − 43-s + (0.499 − 0.866i)44-s + (−0.499 − 0.866i)45-s + (−0.5 + 0.866i)47-s − 0.999·55-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)4-s + (−0.5 + 0.866i)5-s + (−0.5 + 0.866i)9-s + (0.5 + 0.866i)11-s + (−0.499 + 0.866i)16-s + (1 + 1.73i)17-s + (0.5 − 0.866i)19-s + 0.999·20-s + (0.5 − 0.866i)23-s + 0.999·36-s − 43-s + (0.499 − 0.866i)44-s + (−0.499 − 0.866i)45-s + (−0.5 + 0.866i)47-s − 0.999·55-s + ⋯ |
Λ(s)=(=(931s/2ΓC(s)L(s)(0.605−0.795i)Λ(1−s)
Λ(s)=(=(931s/2ΓC(s)L(s)(0.605−0.795i)Λ(1−s)
Degree: |
2 |
Conductor: |
931
= 72⋅19
|
Sign: |
0.605−0.795i
|
Analytic conductor: |
0.464629 |
Root analytic conductor: |
0.681637 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ931(569,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 931, ( :0), 0.605−0.795i)
|
Particular Values
L(21) |
≈ |
0.7816787239 |
L(21) |
≈ |
0.7816787239 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 19 | 1+(−0.5+0.866i)T |
good | 2 | 1+(0.5+0.866i)T2 |
| 3 | 1+(0.5−0.866i)T2 |
| 5 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 11 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 13 | 1−T2 |
| 17 | 1+(−1−1.73i)T+(−0.5+0.866i)T2 |
| 23 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 29 | 1−T2 |
| 31 | 1+(0.5−0.866i)T2 |
| 37 | 1+(0.5+0.866i)T2 |
| 41 | 1−T2 |
| 43 | 1+T+T2 |
| 47 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 53 | 1+(0.5−0.866i)T2 |
| 59 | 1+(0.5−0.866i)T2 |
| 61 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 67 | 1+(0.5−0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 79 | 1+(0.5+0.866i)T2 |
| 83 | 1−T+T2 |
| 89 | 1+(0.5+0.866i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.51965155021030884811589356441, −9.696833605043405474458211810637, −8.737757858825089411608211277743, −7.88583062254236102062964680503, −6.94914445839036822933054455115, −6.10500281671357042875532660945, −5.11880320498645872229286258147, −4.24823142207975782074527625819, −3.04881507901113434033220382517, −1.66431586233228758296887567353,
0.846219027675123186127661269350, 3.16011202294472921603183823811, 3.62655782214096131430972004391, 4.83871484909189759861215890156, 5.62429856210009566655797598174, 6.90565084269467785278640599694, 7.83315833468756567680668419051, 8.494899466022207883699125956180, 9.212757235108250744678764577279, 9.772764656172235479344526227283