L(s) = 1 | + (−0.5 − 0.866i)4-s + (−0.5 + 0.866i)5-s + (−0.5 + 0.866i)9-s + (0.5 + 0.866i)11-s + (−0.499 + 0.866i)16-s + (1 + 1.73i)17-s + (0.5 − 0.866i)19-s + 0.999·20-s + (0.5 − 0.866i)23-s + 0.999·36-s − 43-s + (0.499 − 0.866i)44-s + (−0.499 − 0.866i)45-s + (−0.5 + 0.866i)47-s − 0.999·55-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)4-s + (−0.5 + 0.866i)5-s + (−0.5 + 0.866i)9-s + (0.5 + 0.866i)11-s + (−0.499 + 0.866i)16-s + (1 + 1.73i)17-s + (0.5 − 0.866i)19-s + 0.999·20-s + (0.5 − 0.866i)23-s + 0.999·36-s − 43-s + (0.499 − 0.866i)44-s + (−0.499 − 0.866i)45-s + (−0.5 + 0.866i)47-s − 0.999·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 931 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 931 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7816787239\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7816787239\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
good | 2 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 3 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + (-1 - 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + T + T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - T + T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.51965155021030884811589356441, −9.696833605043405474458211810637, −8.737757858825089411608211277743, −7.88583062254236102062964680503, −6.94914445839036822933054455115, −6.10500281671357042875532660945, −5.11880320498645872229286258147, −4.24823142207975782074527625819, −3.04881507901113434033220382517, −1.66431586233228758296887567353,
0.846219027675123186127661269350, 3.16011202294472921603183823811, 3.62655782214096131430972004391, 4.83871484909189759861215890156, 5.62429856210009566655797598174, 6.90565084269467785278640599694, 7.83315833468756567680668419051, 8.494899466022207883699125956180, 9.212757235108250744678764577279, 9.772764656172235479344526227283