L(s) = 1 | + (−0.5 − 0.866i)2-s + i·3-s + (−0.866 + 0.5i)5-s + (0.866 − 0.5i)6-s − 8-s + (0.866 + 0.499i)10-s + (0.866 − 0.5i)13-s + (−0.5 − 0.866i)15-s + (0.5 + 0.866i)16-s + i·17-s + (0.866 + 0.5i)19-s + 23-s − i·24-s + (−0.866 − 0.499i)26-s + i·27-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)2-s + i·3-s + (−0.866 + 0.5i)5-s + (0.866 − 0.5i)6-s − 8-s + (0.866 + 0.499i)10-s + (0.866 − 0.5i)13-s + (−0.5 − 0.866i)15-s + (0.5 + 0.866i)16-s + i·17-s + (0.866 + 0.5i)19-s + 23-s − i·24-s + (−0.866 − 0.499i)26-s + i·27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 931 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.962 - 0.272i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 931 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.962 - 0.272i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7135766312\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7135766312\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 19 | \( 1 + (-0.866 - 0.5i)T \) |
good | 2 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 3 | \( 1 - iT - T^{2} \) |
| 5 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 - iT - T^{2} \) |
| 23 | \( 1 - T + T^{2} \) |
| 29 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 - iT - T^{2} \) |
| 53 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + iT - T^{2} \) |
| 61 | \( 1 + iT - T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + iT - T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + iT - T^{2} \) |
| 97 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.43676262681067968055608137782, −9.731789625085636846671381449877, −8.883899026118061759349448557131, −8.087318345926855616247234391069, −6.97387248822256457515986040301, −5.91838539305806821428711560719, −4.83793345792158278743608965280, −3.49483453170177207935044155537, −3.30682720694854151566331497045, −1.46401039924033847463452780961,
0.948575539220244715818027798531, 2.71183074506747621594498340452, 3.97796069901549526153324061350, 5.19908999135408060994142871358, 6.36620652026159446138196942441, 7.08697363604737370016753112194, 7.54383511545847247837709464738, 8.426873909798169770306747984297, 8.922767286655287649361857608899, 9.965323104378623187342984000636