L(s) = 1 | + (−0.5 − 0.866i)2-s + i·3-s + (−0.866 + 0.5i)5-s + (0.866 − 0.5i)6-s − 8-s + (0.866 + 0.499i)10-s + (0.866 − 0.5i)13-s + (−0.5 − 0.866i)15-s + (0.5 + 0.866i)16-s + i·17-s + (0.866 + 0.5i)19-s + 23-s − i·24-s + (−0.866 − 0.499i)26-s + i·27-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)2-s + i·3-s + (−0.866 + 0.5i)5-s + (0.866 − 0.5i)6-s − 8-s + (0.866 + 0.499i)10-s + (0.866 − 0.5i)13-s + (−0.5 − 0.866i)15-s + (0.5 + 0.866i)16-s + i·17-s + (0.866 + 0.5i)19-s + 23-s − i·24-s + (−0.866 − 0.499i)26-s + i·27-s + ⋯ |
Λ(s)=(=(931s/2ΓC(s)L(s)(0.962−0.272i)Λ(1−s)
Λ(s)=(=(931s/2ΓC(s)L(s)(0.962−0.272i)Λ(1−s)
Degree: |
2 |
Conductor: |
931
= 72⋅19
|
Sign: |
0.962−0.272i
|
Analytic conductor: |
0.464629 |
Root analytic conductor: |
0.681637 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ931(68,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 931, ( :0), 0.962−0.272i)
|
Particular Values
L(21) |
≈ |
0.7135766312 |
L(21) |
≈ |
0.7135766312 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 19 | 1+(−0.866−0.5i)T |
good | 2 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 3 | 1−iT−T2 |
| 5 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 11 | 1+(−0.5+0.866i)T2 |
| 13 | 1+(−0.866+0.5i)T+(0.5−0.866i)T2 |
| 17 | 1−iT−T2 |
| 23 | 1−T+T2 |
| 29 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 31 | 1+(0.5−0.866i)T2 |
| 37 | 1+(−0.5−0.866i)T2 |
| 41 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 43 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 47 | 1−iT−T2 |
| 53 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 59 | 1+iT−T2 |
| 61 | 1+iT−T2 |
| 67 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 71 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 73 | 1+iT−T2 |
| 79 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 83 | 1−T2 |
| 89 | 1+iT−T2 |
| 97 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.43676262681067968055608137782, −9.731789625085636846671381449877, −8.883899026118061759349448557131, −8.087318345926855616247234391069, −6.97387248822256457515986040301, −5.91838539305806821428711560719, −4.83793345792158278743608965280, −3.49483453170177207935044155537, −3.30682720694854151566331497045, −1.46401039924033847463452780961,
0.948575539220244715818027798531, 2.71183074506747621594498340452, 3.97796069901549526153324061350, 5.19908999135408060994142871358, 6.36620652026159446138196942441, 7.08697363604737370016753112194, 7.54383511545847247837709464738, 8.426873909798169770306747984297, 8.922767286655287649361857608899, 9.965323104378623187342984000636