L(s) = 1 | + 4-s + 5-s + 9-s − 11-s + 16-s − 2·17-s − 19-s + 20-s − 23-s + 36-s − 43-s − 44-s + 45-s + 47-s − 55-s + 61-s + 64-s − 2·68-s + 73-s − 76-s + 80-s + 81-s + 83-s − 2·85-s − 92-s − 95-s − 99-s + ⋯ |
L(s) = 1 | + 4-s + 5-s + 9-s − 11-s + 16-s − 2·17-s − 19-s + 20-s − 23-s + 36-s − 43-s − 44-s + 45-s + 47-s − 55-s + 61-s + 64-s − 2·68-s + 73-s − 76-s + 80-s + 81-s + 83-s − 2·85-s − 92-s − 95-s − 99-s + ⋯ |
Λ(s)=(=(931s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(931s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
931
= 72⋅19
|
Sign: |
1
|
Analytic conductor: |
0.464629 |
Root analytic conductor: |
0.681637 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ931(246,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 931, ( :0), 1)
|
Particular Values
L(21) |
≈ |
1.388611076 |
L(21) |
≈ |
1.388611076 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 19 | 1+T |
good | 2 | (1−T)(1+T) |
| 3 | (1−T)(1+T) |
| 5 | 1−T+T2 |
| 11 | 1+T+T2 |
| 13 | (1−T)(1+T) |
| 17 | (1+T)2 |
| 23 | 1+T+T2 |
| 29 | (1−T)(1+T) |
| 31 | (1−T)(1+T) |
| 37 | (1−T)(1+T) |
| 41 | (1−T)(1+T) |
| 43 | 1+T+T2 |
| 47 | 1−T+T2 |
| 53 | (1−T)(1+T) |
| 59 | (1−T)(1+T) |
| 61 | 1−T+T2 |
| 67 | (1−T)(1+T) |
| 71 | (1−T)(1+T) |
| 73 | 1−T+T2 |
| 79 | (1−T)(1+T) |
| 83 | 1−T+T2 |
| 89 | (1−T)(1+T) |
| 97 | (1−T)(1+T) |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.38739291117278531508092632646, −9.652843390388059780599493064835, −8.576381934259078022497488987091, −7.63384671755479415741608943405, −6.69331232280226476236494483754, −6.19908413004047436911737191485, −5.11240652066751133459345581876, −4.00502174264507225856117454247, −2.39726645069894493899591576473, −1.93189952504357432790521588434,
1.93189952504357432790521588434, 2.39726645069894493899591576473, 4.00502174264507225856117454247, 5.11240652066751133459345581876, 6.19908413004047436911737191485, 6.69331232280226476236494483754, 7.63384671755479415741608943405, 8.576381934259078022497488987091, 9.652843390388059780599493064835, 10.38739291117278531508092632646