L(s) = 1 | − 4·5-s + 2·11-s − 13-s − 2·17-s + 8·19-s − 4·23-s + 11·25-s + 6·29-s − 4·31-s + 6·37-s + 12·41-s + 4·43-s + 6·47-s − 7·49-s + 2·53-s − 8·55-s + 14·59-s + 10·61-s + 4·65-s − 4·67-s − 2·71-s − 2·73-s − 8·79-s − 14·83-s + 8·85-s − 32·95-s − 10·97-s + ⋯ |
L(s) = 1 | − 1.78·5-s + 0.603·11-s − 0.277·13-s − 0.485·17-s + 1.83·19-s − 0.834·23-s + 11/5·25-s + 1.11·29-s − 0.718·31-s + 0.986·37-s + 1.87·41-s + 0.609·43-s + 0.875·47-s − 49-s + 0.274·53-s − 1.07·55-s + 1.82·59-s + 1.28·61-s + 0.496·65-s − 0.488·67-s − 0.237·71-s − 0.234·73-s − 0.900·79-s − 1.53·83-s + 0.867·85-s − 3.28·95-s − 1.01·97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.095896384\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.095896384\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 + T \) |
good | 5 | \( 1 + 4 T + p T^{2} \) |
| 7 | \( 1 + p T^{2} \) |
| 11 | \( 1 - 2 T + p T^{2} \) |
| 17 | \( 1 + 2 T + p T^{2} \) |
| 19 | \( 1 - 8 T + p T^{2} \) |
| 23 | \( 1 + 4 T + p T^{2} \) |
| 29 | \( 1 - 6 T + p T^{2} \) |
| 31 | \( 1 + 4 T + p T^{2} \) |
| 37 | \( 1 - 6 T + p T^{2} \) |
| 41 | \( 1 - 12 T + p T^{2} \) |
| 43 | \( 1 - 4 T + p T^{2} \) |
| 47 | \( 1 - 6 T + p T^{2} \) |
| 53 | \( 1 - 2 T + p T^{2} \) |
| 59 | \( 1 - 14 T + p T^{2} \) |
| 61 | \( 1 - 10 T + p T^{2} \) |
| 67 | \( 1 + 4 T + p T^{2} \) |
| 71 | \( 1 + 2 T + p T^{2} \) |
| 73 | \( 1 + 2 T + p T^{2} \) |
| 79 | \( 1 + 8 T + p T^{2} \) |
| 83 | \( 1 + 14 T + p T^{2} \) |
| 89 | \( 1 + p T^{2} \) |
| 97 | \( 1 + 10 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.03816682502883232848724505843, −9.140403206898220946961227682758, −8.261470901569093424534734056213, −7.53138311391475412234846459345, −6.94953164128169925072485600653, −5.68484105112531909640928874037, −4.47584796632881532587650291705, −3.86619415183519071335286697657, −2.80021793098482472301348633140, −0.837203931274100821703489157823,
0.837203931274100821703489157823, 2.80021793098482472301348633140, 3.86619415183519071335286697657, 4.47584796632881532587650291705, 5.68484105112531909640928874037, 6.94953164128169925072485600653, 7.53138311391475412234846459345, 8.261470901569093424534734056213, 9.140403206898220946961227682758, 10.03816682502883232848724505843