Properties

Label 2-936-1.1-c1-0-8
Degree $2$
Conductor $936$
Sign $1$
Analytic cond. $7.47399$
Root an. cond. $2.73386$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 4·7-s + 13-s − 2·17-s + 8·19-s − 8·23-s − 25-s + 2·29-s + 4·31-s + 8·35-s − 10·37-s − 2·41-s − 4·43-s + 12·47-s + 9·49-s − 6·53-s − 2·61-s + 2·65-s + 8·67-s + 12·71-s + 10·73-s − 8·79-s − 4·85-s + 14·89-s + 4·91-s + 16·95-s + 2·97-s + ⋯
L(s)  = 1  + 0.894·5-s + 1.51·7-s + 0.277·13-s − 0.485·17-s + 1.83·19-s − 1.66·23-s − 1/5·25-s + 0.371·29-s + 0.718·31-s + 1.35·35-s − 1.64·37-s − 0.312·41-s − 0.609·43-s + 1.75·47-s + 9/7·49-s − 0.824·53-s − 0.256·61-s + 0.248·65-s + 0.977·67-s + 1.42·71-s + 1.17·73-s − 0.900·79-s − 0.433·85-s + 1.48·89-s + 0.419·91-s + 1.64·95-s + 0.203·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(936\)    =    \(2^{3} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(7.47399\)
Root analytic conductor: \(2.73386\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 936,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.201334217\)
\(L(\frac12)\) \(\approx\) \(2.201334217\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \)
7 \( 1 - 4 T + p T^{2} \)
11 \( 1 + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 - 8 T + p T^{2} \)
23 \( 1 + 8 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 - 14 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.06728738330013813743566474530, −9.279202530789602619833830982926, −8.305939490605595897046504729212, −7.70165993250910980680050902027, −6.58583463773293315964362259330, −5.55956767485975536855936647512, −4.97706613598293520985338882848, −3.79711754844167209811925133514, −2.30100750298902383089718144360, −1.38372329984625885819535224184, 1.38372329984625885819535224184, 2.30100750298902383089718144360, 3.79711754844167209811925133514, 4.97706613598293520985338882848, 5.55956767485975536855936647512, 6.58583463773293315964362259330, 7.70165993250910980680050902027, 8.305939490605595897046504729212, 9.279202530789602619833830982926, 10.06728738330013813743566474530

Graph of the $Z$-function along the critical line