L(s) = 1 | + (0.5 − 0.866i)3-s + (−0.366 − 1.36i)5-s + (−0.499 − 0.866i)9-s + (−0.5 + 0.866i)13-s + (−1.36 − 0.366i)15-s − i·17-s + (0.866 + 0.5i)23-s + (−0.866 + 0.5i)25-s − 0.999·27-s + (0.366 + 1.36i)31-s + (−1 − i)37-s + (0.499 + 0.866i)39-s + (−0.366 − 1.36i)41-s + (0.866 − 0.5i)43-s + (−0.999 + 0.999i)45-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)3-s + (−0.366 − 1.36i)5-s + (−0.499 − 0.866i)9-s + (−0.5 + 0.866i)13-s + (−1.36 − 0.366i)15-s − i·17-s + (0.866 + 0.5i)23-s + (−0.866 + 0.5i)25-s − 0.999·27-s + (0.366 + 1.36i)31-s + (−1 − i)37-s + (0.499 + 0.866i)39-s + (−0.366 − 1.36i)41-s + (0.866 − 0.5i)43-s + (−0.999 + 0.999i)45-s + ⋯ |
Λ(s)=(=(936s/2ΓC(s)L(s)(−0.311+0.950i)Λ(1−s)
Λ(s)=(=(936s/2ΓC(s)L(s)(−0.311+0.950i)Λ(1−s)
Degree: |
2 |
Conductor: |
936
= 23⋅32⋅13
|
Sign: |
−0.311+0.950i
|
Analytic conductor: |
0.467124 |
Root analytic conductor: |
0.683465 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ936(265,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 936, ( :0), −0.311+0.950i)
|
Particular Values
L(21) |
≈ |
1.042169258 |
L(21) |
≈ |
1.042169258 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−0.5+0.866i)T |
| 13 | 1+(0.5−0.866i)T |
good | 5 | 1+(0.366+1.36i)T+(−0.866+0.5i)T2 |
| 7 | 1+(−0.866−0.5i)T2 |
| 11 | 1+(−0.866−0.5i)T2 |
| 17 | 1+iT−T2 |
| 19 | 1−iT2 |
| 23 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 29 | 1+(−0.5+0.866i)T2 |
| 31 | 1+(−0.366−1.36i)T+(−0.866+0.5i)T2 |
| 37 | 1+(1+i)T+iT2 |
| 41 | 1+(0.366+1.36i)T+(−0.866+0.5i)T2 |
| 43 | 1+(−0.866+0.5i)T+(0.5−0.866i)T2 |
| 47 | 1+(0.366−1.36i)T+(−0.866−0.5i)T2 |
| 53 | 1−T+T2 |
| 59 | 1+(−1.36+0.366i)T+(0.866−0.5i)T2 |
| 61 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 67 | 1+(−0.866+0.5i)T2 |
| 71 | 1−iT2 |
| 73 | 1+(−1−i)T+iT2 |
| 79 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 83 | 1+(1.36+0.366i)T+(0.866+0.5i)T2 |
| 89 | 1+iT2 |
| 97 | 1+(0.866+0.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.634889844275284843916662474084, −8.946806901484747744251020316446, −8.538787504262126513338558787988, −7.38009908491076695743494678413, −6.95804925045234238036711657787, −5.56208790554890446908582109494, −4.76371234894154358788424743507, −3.63989589581498703835923650270, −2.29472328275643872310291942626, −1.01568278684770457234785137423,
2.43725793796328625110298629381, 3.20948182947219682025111276881, 4.07174289346193477666585577473, 5.19548002672924797710506199922, 6.26531361749156595718395068163, 7.24985717774897542699329469432, 8.040729084737041350320970556565, 8.802833819231850772555676477298, 10.06901367579963915532553857959, 10.28262601030309020956755927548