L(s) = 1 | + (0.5 − 0.866i)3-s + (−0.366 − 1.36i)5-s + (−0.499 − 0.866i)9-s + (−0.5 + 0.866i)13-s + (−1.36 − 0.366i)15-s − i·17-s + (0.866 + 0.5i)23-s + (−0.866 + 0.5i)25-s − 0.999·27-s + (0.366 + 1.36i)31-s + (−1 − i)37-s + (0.499 + 0.866i)39-s + (−0.366 − 1.36i)41-s + (0.866 − 0.5i)43-s + (−0.999 + 0.999i)45-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)3-s + (−0.366 − 1.36i)5-s + (−0.499 − 0.866i)9-s + (−0.5 + 0.866i)13-s + (−1.36 − 0.366i)15-s − i·17-s + (0.866 + 0.5i)23-s + (−0.866 + 0.5i)25-s − 0.999·27-s + (0.366 + 1.36i)31-s + (−1 − i)37-s + (0.499 + 0.866i)39-s + (−0.366 − 1.36i)41-s + (0.866 − 0.5i)43-s + (−0.999 + 0.999i)45-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.311 + 0.950i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.311 + 0.950i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.042169258\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.042169258\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 + (0.5 - 0.866i)T \) |
good | 5 | \( 1 + (0.366 + 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 7 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 11 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 17 | \( 1 + iT - T^{2} \) |
| 19 | \( 1 - iT^{2} \) |
| 23 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.366 - 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 37 | \( 1 + (1 + i)T + iT^{2} \) |
| 41 | \( 1 + (0.366 + 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 43 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (0.366 - 1.36i)T + (-0.866 - 0.5i)T^{2} \) |
| 53 | \( 1 - T + T^{2} \) |
| 59 | \( 1 + (-1.36 + 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 71 | \( 1 - iT^{2} \) |
| 73 | \( 1 + (-1 - i)T + iT^{2} \) |
| 79 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (1.36 + 0.366i)T + (0.866 + 0.5i)T^{2} \) |
| 89 | \( 1 + iT^{2} \) |
| 97 | \( 1 + (0.866 + 0.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.634889844275284843916662474084, −8.946806901484747744251020316446, −8.538787504262126513338558787988, −7.38009908491076695743494678413, −6.95804925045234238036711657787, −5.56208790554890446908582109494, −4.76371234894154358788424743507, −3.63989589581498703835923650270, −2.29472328275643872310291942626, −1.01568278684770457234785137423,
2.43725793796328625110298629381, 3.20948182947219682025111276881, 4.07174289346193477666585577473, 5.19548002672924797710506199922, 6.26531361749156595718395068163, 7.24985717774897542699329469432, 8.040729084737041350320970556565, 8.802833819231850772555676477298, 10.06901367579963915532553857959, 10.28262601030309020956755927548