L(s) = 1 | + (0.5 − 0.866i)2-s + (0.766 − 0.642i)3-s + (−0.499 − 0.866i)4-s + (0.766 + 1.32i)5-s + (−0.173 − 0.984i)6-s + (0.173 − 0.300i)7-s − 0.999·8-s + (0.173 − 0.984i)9-s + 1.53·10-s + (−0.939 − 0.342i)12-s + (0.5 + 0.866i)13-s + (−0.173 − 0.300i)14-s + (1.43 + 0.524i)15-s + (−0.5 + 0.866i)16-s − 1.87·17-s + (−0.766 − 0.642i)18-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s + (0.766 − 0.642i)3-s + (−0.499 − 0.866i)4-s + (0.766 + 1.32i)5-s + (−0.173 − 0.984i)6-s + (0.173 − 0.300i)7-s − 0.999·8-s + (0.173 − 0.984i)9-s + 1.53·10-s + (−0.939 − 0.342i)12-s + (0.5 + 0.866i)13-s + (−0.173 − 0.300i)14-s + (1.43 + 0.524i)15-s + (−0.5 + 0.866i)16-s − 1.87·17-s + (−0.766 − 0.642i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.173 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.173 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.669009365\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.669009365\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 + (-0.766 + 0.642i)T \) |
| 13 | \( 1 + (-0.5 - 0.866i)T \) |
good | 5 | \( 1 + (-0.766 - 1.32i)T + (-0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 + (-0.173 + 0.300i)T + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + 1.87T + T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + 1.53T + T^{2} \) |
| 41 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.939 + 1.62i)T + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (0.939 - 1.62i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + 0.347T + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.23103262159873894386315506852, −9.264576352207110235489033930428, −8.761876564877716050713368707085, −7.30639573699005427488699116700, −6.59353433252468939667676209800, −5.96570693415535447880588695325, −4.40104435265045100063904526627, −3.49317464137807264296066886381, −2.42352033014093584883473888023, −1.81834806125956389067996948600,
2.06493405684043981181533529892, 3.40633640256392816317199152755, 4.54001301664613502700015127109, 5.09266895522690221936234168107, 5.89701763050257807392212344778, 7.05567871107031819010618893597, 8.291496048935321125587524812559, 8.682585368851903913511732261380, 9.189247743143536352258125867563, 10.16094061877368684262317111471