L(s) = 1 | + (0.5 − 0.866i)2-s + (0.766 − 0.642i)3-s + (−0.499 − 0.866i)4-s + (0.766 + 1.32i)5-s + (−0.173 − 0.984i)6-s + (0.173 − 0.300i)7-s − 0.999·8-s + (0.173 − 0.984i)9-s + 1.53·10-s + (−0.939 − 0.342i)12-s + (0.5 + 0.866i)13-s + (−0.173 − 0.300i)14-s + (1.43 + 0.524i)15-s + (−0.5 + 0.866i)16-s − 1.87·17-s + (−0.766 − 0.642i)18-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s + (0.766 − 0.642i)3-s + (−0.499 − 0.866i)4-s + (0.766 + 1.32i)5-s + (−0.173 − 0.984i)6-s + (0.173 − 0.300i)7-s − 0.999·8-s + (0.173 − 0.984i)9-s + 1.53·10-s + (−0.939 − 0.342i)12-s + (0.5 + 0.866i)13-s + (−0.173 − 0.300i)14-s + (1.43 + 0.524i)15-s + (−0.5 + 0.866i)16-s − 1.87·17-s + (−0.766 − 0.642i)18-s + ⋯ |
Λ(s)=(=(936s/2ΓC(s)L(s)(0.173+0.984i)Λ(1−s)
Λ(s)=(=(936s/2ΓC(s)L(s)(0.173+0.984i)Λ(1−s)
Degree: |
2 |
Conductor: |
936
= 23⋅32⋅13
|
Sign: |
0.173+0.984i
|
Analytic conductor: |
0.467124 |
Root analytic conductor: |
0.683465 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ936(259,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 936, ( :0), 0.173+0.984i)
|
Particular Values
L(21) |
≈ |
1.669009365 |
L(21) |
≈ |
1.669009365 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5+0.866i)T |
| 3 | 1+(−0.766+0.642i)T |
| 13 | 1+(−0.5−0.866i)T |
good | 5 | 1+(−0.766−1.32i)T+(−0.5+0.866i)T2 |
| 7 | 1+(−0.173+0.300i)T+(−0.5−0.866i)T2 |
| 11 | 1+(0.5+0.866i)T2 |
| 17 | 1+1.87T+T2 |
| 19 | 1−T2 |
| 23 | 1+(0.5−0.866i)T2 |
| 29 | 1+(0.5+0.866i)T2 |
| 31 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 37 | 1+1.53T+T2 |
| 41 | 1+(0.5−0.866i)T2 |
| 43 | 1+(−0.939+1.62i)T+(−0.5−0.866i)T2 |
| 47 | 1+(0.939−1.62i)T+(−0.5−0.866i)T2 |
| 53 | 1−T2 |
| 59 | 1+(0.5−0.866i)T2 |
| 61 | 1+(0.5+0.866i)T2 |
| 67 | 1+(0.5−0.866i)T2 |
| 71 | 1+0.347T+T2 |
| 73 | 1−T2 |
| 79 | 1+(0.5+0.866i)T2 |
| 83 | 1+(0.5+0.866i)T2 |
| 89 | 1−T2 |
| 97 | 1+(0.5+0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.23103262159873894386315506852, −9.264576352207110235489033930428, −8.761876564877716050713368707085, −7.30639573699005427488699116700, −6.59353433252468939667676209800, −5.96570693415535447880588695325, −4.40104435265045100063904526627, −3.49317464137807264296066886381, −2.42352033014093584883473888023, −1.81834806125956389067996948600,
2.06493405684043981181533529892, 3.40633640256392816317199152755, 4.54001301664613502700015127109, 5.09266895522690221936234168107, 5.89701763050257807392212344778, 7.05567871107031819010618893597, 8.291496048935321125587524812559, 8.682585368851903913511732261380, 9.189247743143536352258125867563, 10.16094061877368684262317111471