L(s) = 1 | + (0.5 + 0.866i)2-s + (0.173 − 0.984i)3-s + (−0.499 + 0.866i)4-s + (0.173 − 0.300i)5-s + (0.939 − 0.342i)6-s + (−0.939 − 1.62i)7-s − 0.999·8-s + (−0.939 − 0.342i)9-s + 0.347·10-s + (0.766 + 0.642i)12-s + (0.5 − 0.866i)13-s + (0.939 − 1.62i)14-s + (−0.266 − 0.223i)15-s + (−0.5 − 0.866i)16-s + 1.53·17-s + (−0.173 − 0.984i)18-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)2-s + (0.173 − 0.984i)3-s + (−0.499 + 0.866i)4-s + (0.173 − 0.300i)5-s + (0.939 − 0.342i)6-s + (−0.939 − 1.62i)7-s − 0.999·8-s + (−0.939 − 0.342i)9-s + 0.347·10-s + (0.766 + 0.642i)12-s + (0.5 − 0.866i)13-s + (0.939 − 1.62i)14-s + (−0.266 − 0.223i)15-s + (−0.5 − 0.866i)16-s + 1.53·17-s + (−0.173 − 0.984i)18-s + ⋯ |
Λ(s)=(=(936s/2ΓC(s)L(s)(0.766+0.642i)Λ(1−s)
Λ(s)=(=(936s/2ΓC(s)L(s)(0.766+0.642i)Λ(1−s)
Degree: |
2 |
Conductor: |
936
= 23⋅32⋅13
|
Sign: |
0.766+0.642i
|
Analytic conductor: |
0.467124 |
Root analytic conductor: |
0.683465 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ936(571,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 936, ( :0), 0.766+0.642i)
|
Particular Values
L(21) |
≈ |
1.145499386 |
L(21) |
≈ |
1.145499386 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5−0.866i)T |
| 3 | 1+(−0.173+0.984i)T |
| 13 | 1+(−0.5+0.866i)T |
good | 5 | 1+(−0.173+0.300i)T+(−0.5−0.866i)T2 |
| 7 | 1+(0.939+1.62i)T+(−0.5+0.866i)T2 |
| 11 | 1+(0.5−0.866i)T2 |
| 17 | 1−1.53T+T2 |
| 19 | 1−T2 |
| 23 | 1+(0.5+0.866i)T2 |
| 29 | 1+(0.5−0.866i)T2 |
| 31 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 37 | 1+0.347T+T2 |
| 41 | 1+(0.5+0.866i)T2 |
| 43 | 1+(0.766+1.32i)T+(−0.5+0.866i)T2 |
| 47 | 1+(−0.766−1.32i)T+(−0.5+0.866i)T2 |
| 53 | 1−T2 |
| 59 | 1+(0.5+0.866i)T2 |
| 61 | 1+(0.5−0.866i)T2 |
| 67 | 1+(0.5+0.866i)T2 |
| 71 | 1−1.87T+T2 |
| 73 | 1−T2 |
| 79 | 1+(0.5−0.866i)T2 |
| 83 | 1+(0.5−0.866i)T2 |
| 89 | 1−T2 |
| 97 | 1+(0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.06506900870705766951354793276, −9.110145679098978791874479698929, −8.135368004430734219788789463738, −7.43885934550884356311291129598, −6.89903214080491936996079729513, −5.99532101080813594931681917486, −5.18244894728401172227236820279, −3.67665001129766546784627538157, −3.18856189737395708491296367380, −0.992581125609915865638302776907,
2.19880977026496456782097009518, 3.07314402366013536093382312096, 3.81801845966138062638154493539, 5.07795930920553080306164077079, 5.78702037269898557515899124224, 6.46894571734855944864049408598, 8.314646689570212762592143230686, 9.069243256547853761477605954659, 9.669485139608179540860869964529, 10.21133396582938225634760294742