L(s) = 1 | + (0.5 + 0.866i)2-s + (0.173 − 0.984i)3-s + (−0.499 + 0.866i)4-s + (0.173 − 0.300i)5-s + (0.939 − 0.342i)6-s + (−0.939 − 1.62i)7-s − 0.999·8-s + (−0.939 − 0.342i)9-s + 0.347·10-s + (0.766 + 0.642i)12-s + (0.5 − 0.866i)13-s + (0.939 − 1.62i)14-s + (−0.266 − 0.223i)15-s + (−0.5 − 0.866i)16-s + 1.53·17-s + (−0.173 − 0.984i)18-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)2-s + (0.173 − 0.984i)3-s + (−0.499 + 0.866i)4-s + (0.173 − 0.300i)5-s + (0.939 − 0.342i)6-s + (−0.939 − 1.62i)7-s − 0.999·8-s + (−0.939 − 0.342i)9-s + 0.347·10-s + (0.766 + 0.642i)12-s + (0.5 − 0.866i)13-s + (0.939 − 1.62i)14-s + (−0.266 − 0.223i)15-s + (−0.5 − 0.866i)16-s + 1.53·17-s + (−0.173 − 0.984i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.145499386\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.145499386\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 + (-0.173 + 0.984i)T \) |
| 13 | \( 1 + (-0.5 + 0.866i)T \) |
good | 5 | \( 1 + (-0.173 + 0.300i)T + (-0.5 - 0.866i)T^{2} \) |
| 7 | \( 1 + (0.939 + 1.62i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 - 1.53T + T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + 0.347T + T^{2} \) |
| 41 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.766 + 1.32i)T + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.766 - 1.32i)T + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - 1.87T + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.06506900870705766951354793276, −9.110145679098978791874479698929, −8.135368004430734219788789463738, −7.43885934550884356311291129598, −6.89903214080491936996079729513, −5.99532101080813594931681917486, −5.18244894728401172227236820279, −3.67665001129766546784627538157, −3.18856189737395708491296367380, −0.992581125609915865638302776907,
2.19880977026496456782097009518, 3.07314402366013536093382312096, 3.81801845966138062638154493539, 5.07795930920553080306164077079, 5.78702037269898557515899124224, 6.46894571734855944864049408598, 8.314646689570212762592143230686, 9.069243256547853761477605954659, 9.669485139608179540860869964529, 10.21133396582938225634760294742