L(s) = 1 | + 2.39·2-s + 3.74·4-s − 5-s − 2.89·7-s + 4.19·8-s − 2.39·10-s + 11-s + 4.73·13-s − 6.93·14-s + 2.56·16-s + 5.65·17-s + 19-s − 3.74·20-s + 2.39·22-s + 4.00·23-s + 25-s + 11.3·26-s − 10.8·28-s − 9.32·29-s − 6.60·31-s − 2.24·32-s + 13.5·34-s + 2.89·35-s + 6.07·37-s + 2.39·38-s − 4.19·40-s − 5.47·41-s + ⋯ |
L(s) = 1 | + 1.69·2-s + 1.87·4-s − 0.447·5-s − 1.09·7-s + 1.48·8-s − 0.758·10-s + 0.301·11-s + 1.31·13-s − 1.85·14-s + 0.640·16-s + 1.37·17-s + 0.229·19-s − 0.838·20-s + 0.511·22-s + 0.835·23-s + 0.200·25-s + 2.22·26-s − 2.05·28-s − 1.73·29-s − 1.18·31-s − 0.397·32-s + 2.32·34-s + 0.489·35-s + 0.999·37-s + 0.388·38-s − 0.663·40-s − 0.854·41-s + ⋯ |
Λ(s)=(=(9405s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(9405s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
5.447718874 |
L(21) |
≈ |
5.447718874 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+T |
| 11 | 1−T |
| 19 | 1−T |
good | 2 | 1−2.39T+2T2 |
| 7 | 1+2.89T+7T2 |
| 13 | 1−4.73T+13T2 |
| 17 | 1−5.65T+17T2 |
| 23 | 1−4.00T+23T2 |
| 29 | 1+9.32T+29T2 |
| 31 | 1+6.60T+31T2 |
| 37 | 1−6.07T+37T2 |
| 41 | 1+5.47T+41T2 |
| 43 | 1−10.9T+43T2 |
| 47 | 1−0.295T+47T2 |
| 53 | 1−3.81T+53T2 |
| 59 | 1−5.54T+59T2 |
| 61 | 1+1.01T+61T2 |
| 67 | 1−6.98T+67T2 |
| 71 | 1−1.02T+71T2 |
| 73 | 1+0.202T+73T2 |
| 79 | 1−7.28T+79T2 |
| 83 | 1−13.7T+83T2 |
| 89 | 1−15.8T+89T2 |
| 97 | 1−4.81T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.33908764996712674220205317201, −6.87204956272729777408502061590, −5.99287652759232128939669207394, −5.74988290362478611505772049188, −4.96128856330064712339818867161, −3.92940805541184765348540977539, −3.57190785743125325960999159437, −3.16317972728223342266884101245, −2.07283915293441647267145009974, −0.869743060948438292399171644980,
0.869743060948438292399171644980, 2.07283915293441647267145009974, 3.16317972728223342266884101245, 3.57190785743125325960999159437, 3.92940805541184765348540977539, 4.96128856330064712339818867161, 5.74988290362478611505772049188, 5.99287652759232128939669207394, 6.87204956272729777408502061590, 7.33908764996712674220205317201