L(s) = 1 | + 3-s + 2·5-s + 9-s − 2·11-s + 2·15-s − 2·17-s − 2·23-s − 25-s + 27-s − 6·29-s − 4·31-s − 2·33-s − 6·37-s + 2·41-s + 2·45-s − 2·51-s + 6·53-s − 4·55-s − 12·59-s + 12·61-s − 12·67-s − 2·69-s + 10·71-s − 12·73-s − 75-s − 12·79-s + 81-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.894·5-s + 1/3·9-s − 0.603·11-s + 0.516·15-s − 0.485·17-s − 0.417·23-s − 1/5·25-s + 0.192·27-s − 1.11·29-s − 0.718·31-s − 0.348·33-s − 0.986·37-s + 0.312·41-s + 0.298·45-s − 0.280·51-s + 0.824·53-s − 0.539·55-s − 1.56·59-s + 1.53·61-s − 1.46·67-s − 0.240·69-s + 1.18·71-s − 1.40·73-s − 0.115·75-s − 1.35·79-s + 1/9·81-s + ⋯ |
Λ(s)=(=(9408s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(9408s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 7 | 1 |
good | 5 | 1−2T+pT2 |
| 11 | 1+2T+pT2 |
| 13 | 1+pT2 |
| 17 | 1+2T+pT2 |
| 19 | 1+pT2 |
| 23 | 1+2T+pT2 |
| 29 | 1+6T+pT2 |
| 31 | 1+4T+pT2 |
| 37 | 1+6T+pT2 |
| 41 | 1−2T+pT2 |
| 43 | 1+pT2 |
| 47 | 1+pT2 |
| 53 | 1−6T+pT2 |
| 59 | 1+12T+pT2 |
| 61 | 1−12T+pT2 |
| 67 | 1+12T+pT2 |
| 71 | 1−10T+pT2 |
| 73 | 1+12T+pT2 |
| 79 | 1+12T+pT2 |
| 83 | 1+12T+pT2 |
| 89 | 1+14T+pT2 |
| 97 | 1−12T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.38152233350264094134261020512, −6.77839586162877146619173499201, −5.82353022355995261190831502319, −5.49576071035680018496349915277, −4.53079591074299736281466223085, −3.78711488789932938503782185219, −2.91557507898183341940151924426, −2.14776468086628798905550068389, −1.54646372600141965125612720140, 0,
1.54646372600141965125612720140, 2.14776468086628798905550068389, 2.91557507898183341940151924426, 3.78711488789932938503782185219, 4.53079591074299736281466223085, 5.49576071035680018496349915277, 5.82353022355995261190831502319, 6.77839586162877146619173499201, 7.38152233350264094134261020512