Properties

Label 2-95-1.1-c1-0-2
Degree $2$
Conductor $95$
Sign $1$
Analytic cond. $0.758578$
Root an. cond. $0.870964$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.63·2-s + 3.04·3-s + 4.91·4-s − 5-s − 8.00·6-s − 0.574·7-s − 7.67·8-s + 6.26·9-s + 2.63·10-s + 2.57·11-s + 14.9·12-s − 0.468·13-s + 1.51·14-s − 3.04·15-s + 10.3·16-s − 4.08·17-s − 16.4·18-s + 19-s − 4.91·20-s − 1.74·21-s − 6.77·22-s + 1.51·23-s − 23.3·24-s + 25-s + 1.23·26-s + 9.92·27-s − 2.82·28-s + ⋯
L(s)  = 1  − 1.85·2-s + 1.75·3-s + 2.45·4-s − 0.447·5-s − 3.26·6-s − 0.217·7-s − 2.71·8-s + 2.08·9-s + 0.831·10-s + 0.776·11-s + 4.31·12-s − 0.129·13-s + 0.403·14-s − 0.785·15-s + 2.58·16-s − 0.991·17-s − 3.88·18-s + 0.229·19-s − 1.09·20-s − 0.381·21-s − 1.44·22-s + 0.315·23-s − 4.76·24-s + 0.200·25-s + 0.241·26-s + 1.90·27-s − 0.534·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 95 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 95 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(95\)    =    \(5 \cdot 19\)
Sign: $1$
Analytic conductor: \(0.758578\)
Root analytic conductor: \(0.870964\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 95,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7270491014\)
\(L(\frac12)\) \(\approx\) \(0.7270491014\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + T \)
19 \( 1 - T \)
good2 \( 1 + 2.63T + 2T^{2} \)
3 \( 1 - 3.04T + 3T^{2} \)
7 \( 1 + 0.574T + 7T^{2} \)
11 \( 1 - 2.57T + 11T^{2} \)
13 \( 1 + 0.468T + 13T^{2} \)
17 \( 1 + 4.08T + 17T^{2} \)
23 \( 1 - 1.51T + 23T^{2} \)
29 \( 1 + 4.08T + 29T^{2} \)
31 \( 1 + 9.92T + 31T^{2} \)
37 \( 1 + 8.30T + 37T^{2} \)
41 \( 1 + 1.83T + 41T^{2} \)
43 \( 1 + 0.574T + 43T^{2} \)
47 \( 1 - 7.09T + 47T^{2} \)
53 \( 1 - 4.30T + 53T^{2} \)
59 \( 1 + 2.68T + 59T^{2} \)
61 \( 1 - 12.4T + 61T^{2} \)
67 \( 1 + 2.70T + 67T^{2} \)
71 \( 1 + 7.40T + 71T^{2} \)
73 \( 1 - 12.0T + 73T^{2} \)
79 \( 1 + 6.68T + 79T^{2} \)
83 \( 1 + 6.66T + 83T^{2} \)
89 \( 1 - 14.6T + 89T^{2} \)
97 \( 1 - 17.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.36700061896243089115208569393, −12.91304343132066980748670025179, −11.49416628978873468021726546887, −10.27405079109865726173398810264, −9.105757195727031777406727113277, −8.840094616842938591313698357814, −7.62868382943286804205914427415, −6.89000884209947823183860317021, −3.53759944795802409143405612967, −1.99194710362536732940468895900, 1.99194710362536732940468895900, 3.53759944795802409143405612967, 6.89000884209947823183860317021, 7.62868382943286804205914427415, 8.840094616842938591313698357814, 9.105757195727031777406727113277, 10.27405079109865726173398810264, 11.49416628978873468021726546887, 12.91304343132066980748670025179, 14.36700061896243089115208569393

Graph of the $Z$-function along the critical line