L(s) = 1 | − 2-s − 3-s + 4-s + 6-s + 7-s − 8-s − 2·9-s − 12-s + 13-s − 14-s + 16-s + 3·17-s + 2·18-s + 19-s − 21-s − 3·23-s + 24-s − 26-s + 5·27-s + 28-s − 3·29-s + 2·31-s − 32-s − 3·34-s − 2·36-s + 10·37-s − 38-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s + 0.377·7-s − 0.353·8-s − 2/3·9-s − 0.288·12-s + 0.277·13-s − 0.267·14-s + 1/4·16-s + 0.727·17-s + 0.471·18-s + 0.229·19-s − 0.218·21-s − 0.625·23-s + 0.204·24-s − 0.196·26-s + 0.962·27-s + 0.188·28-s − 0.557·29-s + 0.359·31-s − 0.176·32-s − 0.514·34-s − 1/3·36-s + 1.64·37-s − 0.162·38-s + ⋯ |
Λ(s)=(=(950s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(950s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.8821121233 |
L(21) |
≈ |
0.8821121233 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 5 | 1 |
| 19 | 1−T |
good | 3 | 1+T+pT2 |
| 7 | 1−T+pT2 |
| 11 | 1+pT2 |
| 13 | 1−T+pT2 |
| 17 | 1−3T+pT2 |
| 23 | 1+3T+pT2 |
| 29 | 1+3T+pT2 |
| 31 | 1−2T+pT2 |
| 37 | 1−10T+pT2 |
| 41 | 1−6T+pT2 |
| 43 | 1+2T+pT2 |
| 47 | 1+pT2 |
| 53 | 1+3T+pT2 |
| 59 | 1−3T+pT2 |
| 61 | 1−8T+pT2 |
| 67 | 1−7T+pT2 |
| 71 | 1−12T+pT2 |
| 73 | 1−13T+pT2 |
| 79 | 1−14T+pT2 |
| 83 | 1+6T+pT2 |
| 89 | 1−6T+pT2 |
| 97 | 1−10T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.983035167615231513039157588703, −9.303912250997036448752264323167, −8.237637220939037195909198183700, −7.77982432388455298937264149525, −6.57249513174536622080526940747, −5.85301595783600076781492520747, −4.98057051522020806813162729411, −3.61241990046837984333714647492, −2.34024048259330359076586962577, −0.850809003224210732230405050623,
0.850809003224210732230405050623, 2.34024048259330359076586962577, 3.61241990046837984333714647492, 4.98057051522020806813162729411, 5.85301595783600076781492520747, 6.57249513174536622080526940747, 7.77982432388455298937264149525, 8.237637220939037195909198183700, 9.303912250997036448752264323167, 9.983035167615231513039157588703