L(s) = 1 | − 2-s − 0.414·3-s + 4-s + 0.414·6-s + 4.41·7-s − 8-s − 2.82·9-s − 1.41·11-s − 0.414·12-s + 5.82·13-s − 4.41·14-s + 16-s + 17-s + 2.82·18-s − 19-s − 1.82·21-s + 1.41·22-s + 0.757·23-s + 0.414·24-s − 5.82·26-s + 2.41·27-s + 4.41·28-s − 0.171·29-s + 6.24·31-s − 32-s + 0.585·33-s − 34-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.239·3-s + 0.5·4-s + 0.169·6-s + 1.66·7-s − 0.353·8-s − 0.942·9-s − 0.426·11-s − 0.119·12-s + 1.61·13-s − 1.17·14-s + 0.250·16-s + 0.242·17-s + 0.666·18-s − 0.229·19-s − 0.398·21-s + 0.301·22-s + 0.157·23-s + 0.0845·24-s − 1.14·26-s + 0.464·27-s + 0.834·28-s − 0.0318·29-s + 1.12·31-s − 0.176·32-s + 0.101·33-s − 0.171·34-s + ⋯ |
Λ(s)=(=(950s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(950s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.239160250 |
L(21) |
≈ |
1.239160250 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 5 | 1 |
| 19 | 1+T |
good | 3 | 1+0.414T+3T2 |
| 7 | 1−4.41T+7T2 |
| 11 | 1+1.41T+11T2 |
| 13 | 1−5.82T+13T2 |
| 17 | 1−T+17T2 |
| 23 | 1−0.757T+23T2 |
| 29 | 1+0.171T+29T2 |
| 31 | 1−6.24T+31T2 |
| 37 | 1+8.48T+37T2 |
| 41 | 1+4.24T+41T2 |
| 43 | 1−1.75T+43T2 |
| 47 | 1+47T2 |
| 53 | 1−5.48T+53T2 |
| 59 | 1−6.89T+59T2 |
| 61 | 1−14.2T+61T2 |
| 67 | 1−4.75T+67T2 |
| 71 | 1+13.4T+71T2 |
| 73 | 1−11.4T+73T2 |
| 79 | 1+6.48T+79T2 |
| 83 | 1−14.4T+83T2 |
| 89 | 1−7.07T+89T2 |
| 97 | 1+0.343T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.28077010141182019098845748019, −8.831862100813789181510536703591, −8.458968035015643325998359679496, −7.85092908730108193919178449370, −6.69205257398238111475743537251, −5.70804418276667345505510457016, −4.97743752742474768646814718854, −3.63150975539577213875955977149, −2.24874253997621326318976801540, −1.04897719567186889567602968690,
1.04897719567186889567602968690, 2.24874253997621326318976801540, 3.63150975539577213875955977149, 4.97743752742474768646814718854, 5.70804418276667345505510457016, 6.69205257398238111475743537251, 7.85092908730108193919178449370, 8.458968035015643325998359679496, 8.831862100813789181510536703591, 10.28077010141182019098845748019