L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s − 7-s − 0.999·8-s + (1.5 + 2.59i)9-s + 5·11-s + (1 + 1.73i)13-s + (−0.5 + 0.866i)14-s + (−0.5 + 0.866i)16-s + 3·18-s + (−0.5 + 4.33i)19-s + (2.5 − 4.33i)22-s + (0.5 + 0.866i)23-s + 1.99·26-s + (0.499 + 0.866i)28-s + (−3 − 5.19i)29-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.249 − 0.433i)4-s − 0.377·7-s − 0.353·8-s + (0.5 + 0.866i)9-s + 1.50·11-s + (0.277 + 0.480i)13-s + (−0.133 + 0.231i)14-s + (−0.125 + 0.216i)16-s + 0.707·18-s + (−0.114 + 0.993i)19-s + (0.533 − 0.923i)22-s + (0.104 + 0.180i)23-s + 0.392·26-s + (0.0944 + 0.163i)28-s + (−0.557 − 0.964i)29-s + ⋯ |
Λ(s)=(=(950s/2ΓC(s)L(s)(0.910+0.412i)Λ(2−s)
Λ(s)=(=(950s/2ΓC(s+1/2)L(s)(0.910+0.412i)Λ(1−s)
Degree: |
2 |
Conductor: |
950
= 2⋅52⋅19
|
Sign: |
0.910+0.412i
|
Analytic conductor: |
7.58578 |
Root analytic conductor: |
2.75423 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ950(201,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 950, ( :1/2), 0.910+0.412i)
|
Particular Values
L(1) |
≈ |
1.94884−0.421198i |
L(21) |
≈ |
1.94884−0.421198i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5+0.866i)T |
| 5 | 1 |
| 19 | 1+(0.5−4.33i)T |
good | 3 | 1+(−1.5−2.59i)T2 |
| 7 | 1+T+7T2 |
| 11 | 1−5T+11T2 |
| 13 | 1+(−1−1.73i)T+(−6.5+11.2i)T2 |
| 17 | 1+(−8.5−14.7i)T2 |
| 23 | 1+(−0.5−0.866i)T+(−11.5+19.9i)T2 |
| 29 | 1+(3+5.19i)T+(−14.5+25.1i)T2 |
| 31 | 1−4T+31T2 |
| 37 | 1−11T+37T2 |
| 41 | 1+(−4.5+7.79i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−3+5.19i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−23.5+40.7i)T2 |
| 53 | 1+(−2.5−4.33i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−29.5−51.0i)T2 |
| 61 | 1+(−30.5+52.8i)T2 |
| 67 | 1+(−6−10.3i)T+(−33.5+58.0i)T2 |
| 71 | 1+(3−5.19i)T+(−35.5−61.4i)T2 |
| 73 | 1+(−7+12.1i)T+(−36.5−63.2i)T2 |
| 79 | 1+(5−8.66i)T+(−39.5−68.4i)T2 |
| 83 | 1+14T+83T2 |
| 89 | 1+(−3.5−6.06i)T+(−44.5+77.0i)T2 |
| 97 | 1+(1−1.73i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.932918427995837414089519391319, −9.430729454746527553327742374237, −8.447918354250738830884132284406, −7.40655059846664527146659403522, −6.41831436480062518115554336333, −5.64848032313846357543304691273, −4.29353267796000027187381777841, −3.87614472238841220322712760618, −2.40931606491552331823877825361, −1.29793947836325581910441911715,
1.04987745002552233066082512272, 2.98054166850019483021196192632, 3.92842817128213055915857811861, 4.73339480470200908725662950753, 6.11675240902167177274167002985, 6.51779602412075469500115003179, 7.35155301191210300128862824800, 8.433991680114459480987162768451, 9.317519993778239477508888710175, 9.719832933752611909378027284309