Properties

Label 2-950-19.11-c1-0-23
Degree 22
Conductor 950950
Sign 0.221+0.975i0.221 + 0.975i
Analytic cond. 7.585787.58578
Root an. cond. 2.754232.75423
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.5 − 0.866i)2-s + (0.664 − 1.15i)3-s + (−0.499 − 0.866i)4-s + (−0.664 − 1.15i)6-s + 2.32·7-s − 0.999·8-s + (0.616 + 1.06i)9-s + 6.39·11-s − 1.32·12-s + (0.429 + 0.743i)13-s + (1.16 − 2.01i)14-s + (−0.5 + 0.866i)16-s + (−2.34 + 4.06i)17-s + 1.23·18-s + (3.75 − 2.21i)19-s + ⋯
L(s)  = 1  + (0.353 − 0.612i)2-s + (0.383 − 0.664i)3-s + (−0.249 − 0.433i)4-s + (−0.271 − 0.469i)6-s + 0.880·7-s − 0.353·8-s + (0.205 + 0.355i)9-s + 1.92·11-s − 0.383·12-s + (0.119 + 0.206i)13-s + (0.311 − 0.539i)14-s + (−0.125 + 0.216i)16-s + (−0.568 + 0.985i)17-s + 0.290·18-s + (0.860 − 0.509i)19-s + ⋯

Functional equation

Λ(s)=(950s/2ΓC(s)L(s)=((0.221+0.975i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.221 + 0.975i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(950s/2ΓC(s+1/2)L(s)=((0.221+0.975i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.221 + 0.975i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 950950    =    252192 \cdot 5^{2} \cdot 19
Sign: 0.221+0.975i0.221 + 0.975i
Analytic conductor: 7.585787.58578
Root analytic conductor: 2.754232.75423
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ950(201,)\chi_{950} (201, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 950, ( :1/2), 0.221+0.975i)(2,\ 950,\ (\ :1/2),\ 0.221 + 0.975i)

Particular Values

L(1)L(1) \approx 2.012161.60634i2.01216 - 1.60634i
L(12)L(\frac12) \approx 2.012161.60634i2.01216 - 1.60634i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
5 1 1
19 1+(3.75+2.21i)T 1 + (-3.75 + 2.21i)T
good3 1+(0.664+1.15i)T+(1.52.59i)T2 1 + (-0.664 + 1.15i)T + (-1.5 - 2.59i)T^{2}
7 12.32T+7T2 1 - 2.32T + 7T^{2}
11 16.39T+11T2 1 - 6.39T + 11T^{2}
13 1+(0.4290.743i)T+(6.5+11.2i)T2 1 + (-0.429 - 0.743i)T + (-6.5 + 11.2i)T^{2}
17 1+(2.344.06i)T+(8.514.7i)T2 1 + (2.34 - 4.06i)T + (-8.5 - 14.7i)T^{2}
23 1+(1.73+3.00i)T+(11.5+19.9i)T2 1 + (1.73 + 3.00i)T + (-11.5 + 19.9i)T^{2}
29 1+(2.213.82i)T+(14.5+25.1i)T2 1 + (-2.21 - 3.82i)T + (-14.5 + 25.1i)T^{2}
31 1+8.25T+31T2 1 + 8.25T + 31T^{2}
37 1+9.76T+37T2 1 + 9.76T + 37T^{2}
41 1+(1.843.19i)T+(20.535.5i)T2 1 + (1.84 - 3.19i)T + (-20.5 - 35.5i)T^{2}
43 1+(3.56+6.17i)T+(21.537.2i)T2 1 + (-3.56 + 6.17i)T + (-21.5 - 37.2i)T^{2}
47 1+(3.59+6.22i)T+(23.5+40.7i)T2 1 + (3.59 + 6.22i)T + (-23.5 + 40.7i)T^{2}
53 1+(3.10+5.37i)T+(26.5+45.8i)T2 1 + (3.10 + 5.37i)T + (-26.5 + 45.8i)T^{2}
59 1+(3.09+5.35i)T+(29.551.0i)T2 1 + (-3.09 + 5.35i)T + (-29.5 - 51.0i)T^{2}
61 1+(4.016.94i)T+(30.5+52.8i)T2 1 + (-4.01 - 6.94i)T + (-30.5 + 52.8i)T^{2}
67 1+(2.45+4.24i)T+(33.5+58.0i)T2 1 + (2.45 + 4.24i)T + (-33.5 + 58.0i)T^{2}
71 1+(1.101.90i)T+(35.561.4i)T2 1 + (1.10 - 1.90i)T + (-35.5 - 61.4i)T^{2}
73 1+(2.324.03i)T+(36.563.2i)T2 1 + (2.32 - 4.03i)T + (-36.5 - 63.2i)T^{2}
79 1+(5.7910.0i)T+(39.568.4i)T2 1 + (5.79 - 10.0i)T + (-39.5 - 68.4i)T^{2}
83 1+6.07T+83T2 1 + 6.07T + 83T^{2}
89 1+(5.64+9.78i)T+(44.5+77.0i)T2 1 + (5.64 + 9.78i)T + (-44.5 + 77.0i)T^{2}
97 1+(5.679.82i)T+(48.584.0i)T2 1 + (5.67 - 9.82i)T + (-48.5 - 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.942426319338394921548003957492, −8.816844303690172395916834701507, −8.482513944518071658262909427277, −7.16970606853695673957843703370, −6.61336321418382467141739162368, −5.34216392398065583932203364259, −4.36544867130133885585811870202, −3.50397597573142819098099045350, −1.96595759283898213887532636994, −1.41123166081409293411567953934, 1.47483832602227039304648821405, 3.29061187106906006373359409763, 4.05059036568680158179108688892, 4.81821699422194481113673298727, 5.88526795394336365702027705385, 6.85164382955672137152257095800, 7.60619945614018153056356869345, 8.708769626162057522615074803112, 9.234328811828112258183545514316, 9.912988399368212399420982013094

Graph of the ZZ-function along the critical line