L(s) = 1 | + (−0.5 + 0.866i)2-s + (0.341 − 0.590i)3-s + (−0.499 − 0.866i)4-s + (0.341 + 0.590i)6-s − 0.317·7-s + 0.999·8-s + (1.26 + 2.19i)9-s − 4.31·11-s − 0.682·12-s + (−3.14 − 5.45i)13-s + (0.158 − 0.275i)14-s + (−0.5 + 0.866i)16-s + (0.0669 − 0.115i)17-s − 2.53·18-s + (−4.05 − 1.60i)19-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (0.196 − 0.341i)3-s + (−0.249 − 0.433i)4-s + (0.139 + 0.241i)6-s − 0.120·7-s + 0.353·8-s + (0.422 + 0.731i)9-s − 1.29·11-s − 0.196·12-s + (−0.873 − 1.51i)13-s + (0.0424 − 0.0735i)14-s + (−0.125 + 0.216i)16-s + (0.0162 − 0.0281i)17-s − 0.597·18-s + (−0.929 − 0.367i)19-s + ⋯ |
Λ(s)=(=(950s/2ΓC(s)L(s)(−0.634+0.772i)Λ(2−s)
Λ(s)=(=(950s/2ΓC(s+1/2)L(s)(−0.634+0.772i)Λ(1−s)
Degree: |
2 |
Conductor: |
950
= 2⋅52⋅19
|
Sign: |
−0.634+0.772i
|
Analytic conductor: |
7.58578 |
Root analytic conductor: |
2.75423 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ950(201,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 950, ( :1/2), −0.634+0.772i)
|
Particular Values
L(1) |
≈ |
0.140552−0.297299i |
L(21) |
≈ |
0.140552−0.297299i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5−0.866i)T |
| 5 | 1 |
| 19 | 1+(4.05+1.60i)T |
good | 3 | 1+(−0.341+0.590i)T+(−1.5−2.59i)T2 |
| 7 | 1+0.317T+7T2 |
| 11 | 1+4.31T+11T2 |
| 13 | 1+(3.14+5.45i)T+(−6.5+11.2i)T2 |
| 17 | 1+(−0.0669+0.115i)T+(−8.5−14.7i)T2 |
| 23 | 1+(1.98+3.44i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−4.57−7.92i)T+(−14.5+25.1i)T2 |
| 31 | 1+2.98T+31T2 |
| 37 | 1+5.07T+37T2 |
| 41 | 1+(−0.433+0.750i)T+(−20.5−35.5i)T2 |
| 43 | 1+(2.85−4.93i)T+(−21.5−37.2i)T2 |
| 47 | 1+(6.48+11.2i)T+(−23.5+40.7i)T2 |
| 53 | 1+(3.96+6.86i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−4.80+8.32i)T+(−29.5−51.0i)T2 |
| 61 | 1+(3.08+5.34i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−0.295−0.511i)T+(−33.5+58.0i)T2 |
| 71 | 1+(5.83−10.0i)T+(−35.5−61.4i)T2 |
| 73 | 1+(−4.13+7.15i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−1.66+2.87i)T+(−39.5−68.4i)T2 |
| 83 | 1+4.20T+83T2 |
| 89 | 1+(−1.85−3.22i)T+(−44.5+77.0i)T2 |
| 97 | 1+(2.42−4.20i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.922798903916987538351296848998, −8.470201272741297006271829096682, −8.139592628966189906898101456115, −7.30310028343870608233484540228, −6.54901628821430004032311172176, −5.21147204726963166683233702870, −4.89892850274159833407510705487, −3.12284101882720555449499487054, −2.04731665134523931866722633506, −0.15649717172150991007035575650,
1.81876262299425626992108586709, 2.88181792382334428435581839427, 4.06553587797126204129162504379, 4.74196730598372758272984817831, 6.10813005071394217586285696486, 7.10578872476106693305261152465, 7.975796968143142447168750005183, 8.885127791478456243387638400257, 9.698970111736579651936416675460, 10.11520722473471453221698438522