L(s) = 1 | + (−0.5 + 0.866i)2-s + (0.341 − 0.590i)3-s + (−0.499 − 0.866i)4-s + (0.341 + 0.590i)6-s − 0.317·7-s + 0.999·8-s + (1.26 + 2.19i)9-s − 4.31·11-s − 0.682·12-s + (−3.14 − 5.45i)13-s + (0.158 − 0.275i)14-s + (−0.5 + 0.866i)16-s + (0.0669 − 0.115i)17-s − 2.53·18-s + (−4.05 − 1.60i)19-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (0.196 − 0.341i)3-s + (−0.249 − 0.433i)4-s + (0.139 + 0.241i)6-s − 0.120·7-s + 0.353·8-s + (0.422 + 0.731i)9-s − 1.29·11-s − 0.196·12-s + (−0.873 − 1.51i)13-s + (0.0424 − 0.0735i)14-s + (−0.125 + 0.216i)16-s + (0.0162 − 0.0281i)17-s − 0.597·18-s + (−0.929 − 0.367i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.634 + 0.772i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.634 + 0.772i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.140552 - 0.297299i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.140552 - 0.297299i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 5 | \( 1 \) |
| 19 | \( 1 + (4.05 + 1.60i)T \) |
good | 3 | \( 1 + (-0.341 + 0.590i)T + (-1.5 - 2.59i)T^{2} \) |
| 7 | \( 1 + 0.317T + 7T^{2} \) |
| 11 | \( 1 + 4.31T + 11T^{2} \) |
| 13 | \( 1 + (3.14 + 5.45i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-0.0669 + 0.115i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (1.98 + 3.44i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.57 - 7.92i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 2.98T + 31T^{2} \) |
| 37 | \( 1 + 5.07T + 37T^{2} \) |
| 41 | \( 1 + (-0.433 + 0.750i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (2.85 - 4.93i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (6.48 + 11.2i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (3.96 + 6.86i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-4.80 + 8.32i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.08 + 5.34i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.295 - 0.511i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (5.83 - 10.0i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-4.13 + 7.15i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-1.66 + 2.87i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 4.20T + 83T^{2} \) |
| 89 | \( 1 + (-1.85 - 3.22i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (2.42 - 4.20i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.922798903916987538351296848998, −8.470201272741297006271829096682, −8.139592628966189906898101456115, −7.30310028343870608233484540228, −6.54901628821430004032311172176, −5.21147204726963166683233702870, −4.89892850274159833407510705487, −3.12284101882720555449499487054, −2.04731665134523931866722633506, −0.15649717172150991007035575650,
1.81876262299425626992108586709, 2.88181792382334428435581839427, 4.06553587797126204129162504379, 4.74196730598372758272984817831, 6.10813005071394217586285696486, 7.10578872476106693305261152465, 7.975796968143142447168750005183, 8.885127791478456243387638400257, 9.698970111736579651936416675460, 10.11520722473471453221698438522