L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.5 − 0.866i)3-s + (−0.499 + 0.866i)4-s + (−0.499 + 0.866i)6-s − 2·7-s + 0.999·8-s + (1 − 1.73i)9-s + 0.999·12-s + (−3 + 5.19i)13-s + (1 + 1.73i)14-s + (−0.5 − 0.866i)16-s + (−3.5 − 6.06i)17-s − 2·18-s + (3.5 + 2.59i)19-s + (1 + 1.73i)21-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.288 − 0.499i)3-s + (−0.249 + 0.433i)4-s + (−0.204 + 0.353i)6-s − 0.755·7-s + 0.353·8-s + (0.333 − 0.577i)9-s + 0.288·12-s + (−0.832 + 1.44i)13-s + (0.267 + 0.462i)14-s + (−0.125 − 0.216i)16-s + (−0.848 − 1.47i)17-s − 0.471·18-s + (0.802 + 0.596i)19-s + (0.218 + 0.377i)21-s + ⋯ |
Λ(s)=(=(950s/2ΓC(s)L(s)(0.321−0.946i)Λ(2−s)
Λ(s)=(=(950s/2ΓC(s+1/2)L(s)(0.321−0.946i)Λ(1−s)
Degree: |
2 |
Conductor: |
950
= 2⋅52⋅19
|
Sign: |
0.321−0.946i
|
Analytic conductor: |
7.58578 |
Root analytic conductor: |
2.75423 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ950(501,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 950, ( :1/2), 0.321−0.946i)
|
Particular Values
L(1) |
≈ |
0.289940+0.207644i |
L(21) |
≈ |
0.289940+0.207644i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5+0.866i)T |
| 5 | 1 |
| 19 | 1+(−3.5−2.59i)T |
good | 3 | 1+(0.5+0.866i)T+(−1.5+2.59i)T2 |
| 7 | 1+2T+7T2 |
| 11 | 1+11T2 |
| 13 | 1+(3−5.19i)T+(−6.5−11.2i)T2 |
| 17 | 1+(3.5+6.06i)T+(−8.5+14.7i)T2 |
| 23 | 1+(1−1.73i)T+(−11.5−19.9i)T2 |
| 29 | 1+(5−8.66i)T+(−14.5−25.1i)T2 |
| 31 | 1+2T+31T2 |
| 37 | 1−4T+37T2 |
| 41 | 1+(1+1.73i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−6−10.3i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−23.5−40.7i)T2 |
| 53 | 1+(−26.5−45.8i)T2 |
| 59 | 1+(−0.5−0.866i)T+(−29.5+51.0i)T2 |
| 61 | 1+(4−6.92i)T+(−30.5−52.8i)T2 |
| 67 | 1+(4−6.92i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−6−10.3i)T+(−35.5+61.4i)T2 |
| 73 | 1+(−1.5−2.59i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−2−3.46i)T+(−39.5+68.4i)T2 |
| 83 | 1+13T+83T2 |
| 89 | 1+(−6.5+11.2i)T+(−44.5−77.0i)T2 |
| 97 | 1+(7.5+12.9i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.945375299050809169687558083325, −9.458727408915369424747099895819, −8.929679286484857229234258393949, −7.30412621269998237350727960862, −7.15488639386538675401656096160, −6.05960659677443724933872505973, −4.80830198253135110570329868018, −3.76820332631954001470310510809, −2.64898730943208923543592352889, −1.38495792163468881428220514014,
0.19823096282507986237701611881, 2.25674862786290202247811211318, 3.69883378923026996499869594817, 4.74498306550593141600686354744, 5.62477594214103091033009849738, 6.36835858304964599464030295006, 7.50708464308209509550715752550, 8.012359466433770125134083866667, 9.183689866291951142782107207013, 9.863539739500078601203581498044