Properties

Label 2-950-19.7-c1-0-2
Degree $2$
Conductor $950$
Sign $0.321 - 0.946i$
Analytic cond. $7.58578$
Root an. cond. $2.75423$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 − 0.866i)2-s + (−0.5 − 0.866i)3-s + (−0.499 + 0.866i)4-s + (−0.499 + 0.866i)6-s − 2·7-s + 0.999·8-s + (1 − 1.73i)9-s + 0.999·12-s + (−3 + 5.19i)13-s + (1 + 1.73i)14-s + (−0.5 − 0.866i)16-s + (−3.5 − 6.06i)17-s − 2·18-s + (3.5 + 2.59i)19-s + (1 + 1.73i)21-s + ⋯
L(s)  = 1  + (−0.353 − 0.612i)2-s + (−0.288 − 0.499i)3-s + (−0.249 + 0.433i)4-s + (−0.204 + 0.353i)6-s − 0.755·7-s + 0.353·8-s + (0.333 − 0.577i)9-s + 0.288·12-s + (−0.832 + 1.44i)13-s + (0.267 + 0.462i)14-s + (−0.125 − 0.216i)16-s + (−0.848 − 1.47i)17-s − 0.471·18-s + (0.802 + 0.596i)19-s + (0.218 + 0.377i)21-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.321 - 0.946i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.321 - 0.946i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(950\)    =    \(2 \cdot 5^{2} \cdot 19\)
Sign: $0.321 - 0.946i$
Analytic conductor: \(7.58578\)
Root analytic conductor: \(2.75423\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{950} (501, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 950,\ (\ :1/2),\ 0.321 - 0.946i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.289940 + 0.207644i\)
\(L(\frac12)\) \(\approx\) \(0.289940 + 0.207644i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.5 + 0.866i)T \)
5 \( 1 \)
19 \( 1 + (-3.5 - 2.59i)T \)
good3 \( 1 + (0.5 + 0.866i)T + (-1.5 + 2.59i)T^{2} \)
7 \( 1 + 2T + 7T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 + (3 - 5.19i)T + (-6.5 - 11.2i)T^{2} \)
17 \( 1 + (3.5 + 6.06i)T + (-8.5 + 14.7i)T^{2} \)
23 \( 1 + (1 - 1.73i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (5 - 8.66i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 + 2T + 31T^{2} \)
37 \( 1 - 4T + 37T^{2} \)
41 \( 1 + (1 + 1.73i)T + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (-6 - 10.3i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (-0.5 - 0.866i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (4 - 6.92i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (4 - 6.92i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (-6 - 10.3i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (-1.5 - 2.59i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (-2 - 3.46i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + 13T + 83T^{2} \)
89 \( 1 + (-6.5 + 11.2i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (7.5 + 12.9i)T + (-48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.945375299050809169687558083325, −9.458727408915369424747099895819, −8.929679286484857229234258393949, −7.30412621269998237350727960862, −7.15488639386538675401656096160, −6.05960659677443724933872505973, −4.80830198253135110570329868018, −3.76820332631954001470310510809, −2.64898730943208923543592352889, −1.38495792163468881428220514014, 0.19823096282507986237701611881, 2.25674862786290202247811211318, 3.69883378923026996499869594817, 4.74498306550593141600686354744, 5.62477594214103091033009849738, 6.36835858304964599464030295006, 7.50708464308209509550715752550, 8.012359466433770125134083866667, 9.183689866291951142782107207013, 9.863539739500078601203581498044

Graph of the $Z$-function along the critical line