Properties

Label 2-9576-1.1-c1-0-106
Degree $2$
Conductor $9576$
Sign $-1$
Analytic cond. $76.4647$
Root an. cond. $8.74441$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 7-s − 2·11-s − 3.12·13-s + 3.12·17-s − 19-s + 7.12·23-s − 25-s − 9.12·29-s − 1.12·31-s − 2·35-s − 0.876·37-s + 8.24·41-s + 4·43-s + 49-s − 5.12·53-s − 4·55-s − 6.24·59-s − 2·61-s − 6.24·65-s − 14.2·67-s + 9.36·71-s − 10·73-s + 2·77-s + 13.1·79-s + 9.12·83-s + 6.24·85-s + ⋯
L(s)  = 1  + 0.894·5-s − 0.377·7-s − 0.603·11-s − 0.866·13-s + 0.757·17-s − 0.229·19-s + 1.48·23-s − 0.200·25-s − 1.69·29-s − 0.201·31-s − 0.338·35-s − 0.144·37-s + 1.28·41-s + 0.609·43-s + 0.142·49-s − 0.703·53-s − 0.539·55-s − 0.813·59-s − 0.256·61-s − 0.774·65-s − 1.74·67-s + 1.11·71-s − 1.17·73-s + 0.227·77-s + 1.47·79-s + 1.00·83-s + 0.677·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9576 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9576\)    =    \(2^{3} \cdot 3^{2} \cdot 7 \cdot 19\)
Sign: $-1$
Analytic conductor: \(76.4647\)
Root analytic conductor: \(8.74441\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9576,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
19 \( 1 + T \)
good5 \( 1 - 2T + 5T^{2} \)
11 \( 1 + 2T + 11T^{2} \)
13 \( 1 + 3.12T + 13T^{2} \)
17 \( 1 - 3.12T + 17T^{2} \)
23 \( 1 - 7.12T + 23T^{2} \)
29 \( 1 + 9.12T + 29T^{2} \)
31 \( 1 + 1.12T + 31T^{2} \)
37 \( 1 + 0.876T + 37T^{2} \)
41 \( 1 - 8.24T + 41T^{2} \)
43 \( 1 - 4T + 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 + 5.12T + 53T^{2} \)
59 \( 1 + 6.24T + 59T^{2} \)
61 \( 1 + 2T + 61T^{2} \)
67 \( 1 + 14.2T + 67T^{2} \)
71 \( 1 - 9.36T + 71T^{2} \)
73 \( 1 + 10T + 73T^{2} \)
79 \( 1 - 13.1T + 79T^{2} \)
83 \( 1 - 9.12T + 83T^{2} \)
89 \( 1 - 0.246T + 89T^{2} \)
97 \( 1 - 8.24T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.52976781513683755530328151294, −6.62165980050771849222973935862, −5.88257156651207040240560299792, −5.38710787028660319984339311543, −4.73928513783613514319005326355, −3.73972561851802654551471421950, −2.88819445948934469215030515990, −2.26631660693678829317883843248, −1.30198454774280321651165281559, 0, 1.30198454774280321651165281559, 2.26631660693678829317883843248, 2.88819445948934469215030515990, 3.73972561851802654551471421950, 4.73928513783613514319005326355, 5.38710787028660319984339311543, 5.88257156651207040240560299792, 6.62165980050771849222973935862, 7.52976781513683755530328151294

Graph of the $Z$-function along the critical line