Properties

Label 2-9576-1.1-c1-0-115
Degree $2$
Conductor $9576$
Sign $-1$
Analytic cond. $76.4647$
Root an. cond. $8.74441$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.23·5-s + 7-s − 2.85·11-s − 3·13-s + 1.61·17-s − 19-s + 1.76·23-s + 0.854·29-s − 4.38·31-s + 2.23·35-s − 4.70·37-s + 1.14·41-s − 3.52·43-s + 7.47·47-s + 49-s − 10.3·53-s − 6.38·55-s + 3·59-s − 15.1·61-s − 6.70·65-s + 2.85·67-s + 15.1·71-s + 2.32·73-s − 2.85·77-s + 0.472·79-s − 9.56·83-s + 3.61·85-s + ⋯
L(s)  = 1  + 0.999·5-s + 0.377·7-s − 0.860·11-s − 0.832·13-s + 0.392·17-s − 0.229·19-s + 0.367·23-s + 0.158·29-s − 0.787·31-s + 0.377·35-s − 0.774·37-s + 0.178·41-s − 0.537·43-s + 1.08·47-s + 0.142·49-s − 1.41·53-s − 0.860·55-s + 0.390·59-s − 1.94·61-s − 0.832·65-s + 0.348·67-s + 1.80·71-s + 0.272·73-s − 0.325·77-s + 0.0531·79-s − 1.04·83-s + 0.392·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9576 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9576\)    =    \(2^{3} \cdot 3^{2} \cdot 7 \cdot 19\)
Sign: $-1$
Analytic conductor: \(76.4647\)
Root analytic conductor: \(8.74441\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9576,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
19 \( 1 + T \)
good5 \( 1 - 2.23T + 5T^{2} \)
11 \( 1 + 2.85T + 11T^{2} \)
13 \( 1 + 3T + 13T^{2} \)
17 \( 1 - 1.61T + 17T^{2} \)
23 \( 1 - 1.76T + 23T^{2} \)
29 \( 1 - 0.854T + 29T^{2} \)
31 \( 1 + 4.38T + 31T^{2} \)
37 \( 1 + 4.70T + 37T^{2} \)
41 \( 1 - 1.14T + 41T^{2} \)
43 \( 1 + 3.52T + 43T^{2} \)
47 \( 1 - 7.47T + 47T^{2} \)
53 \( 1 + 10.3T + 53T^{2} \)
59 \( 1 - 3T + 59T^{2} \)
61 \( 1 + 15.1T + 61T^{2} \)
67 \( 1 - 2.85T + 67T^{2} \)
71 \( 1 - 15.1T + 71T^{2} \)
73 \( 1 - 2.32T + 73T^{2} \)
79 \( 1 - 0.472T + 79T^{2} \)
83 \( 1 + 9.56T + 83T^{2} \)
89 \( 1 + 5.70T + 89T^{2} \)
97 \( 1 + 9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.43542493027224997737351180844, −6.63673183425818516865636857408, −5.89727521308227951996512601245, −5.23570394305607498854212253347, −4.85098158804577420470472341087, −3.80091515961461830913863109897, −2.83129301551225469370569455608, −2.19402882379646767640728040003, −1.39528374035394068376229403899, 0, 1.39528374035394068376229403899, 2.19402882379646767640728040003, 2.83129301551225469370569455608, 3.80091515961461830913863109897, 4.85098158804577420470472341087, 5.23570394305607498854212253347, 5.89727521308227951996512601245, 6.63673183425818516865636857408, 7.43542493027224997737351180844

Graph of the $Z$-function along the critical line