L(s) = 1 | + 2.23·5-s + 7-s − 2.85·11-s − 3·13-s + 1.61·17-s − 19-s + 1.76·23-s + 0.854·29-s − 4.38·31-s + 2.23·35-s − 4.70·37-s + 1.14·41-s − 3.52·43-s + 7.47·47-s + 49-s − 10.3·53-s − 6.38·55-s + 3·59-s − 15.1·61-s − 6.70·65-s + 2.85·67-s + 15.1·71-s + 2.32·73-s − 2.85·77-s + 0.472·79-s − 9.56·83-s + 3.61·85-s + ⋯ |
L(s) = 1 | + 0.999·5-s + 0.377·7-s − 0.860·11-s − 0.832·13-s + 0.392·17-s − 0.229·19-s + 0.367·23-s + 0.158·29-s − 0.787·31-s + 0.377·35-s − 0.774·37-s + 0.178·41-s − 0.537·43-s + 1.08·47-s + 0.142·49-s − 1.41·53-s − 0.860·55-s + 0.390·59-s − 1.94·61-s − 0.832·65-s + 0.348·67-s + 1.80·71-s + 0.272·73-s − 0.325·77-s + 0.0531·79-s − 1.04·83-s + 0.392·85-s + ⋯ |
Λ(s)=(=(9576s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(9576s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1−T |
| 19 | 1+T |
good | 5 | 1−2.23T+5T2 |
| 11 | 1+2.85T+11T2 |
| 13 | 1+3T+13T2 |
| 17 | 1−1.61T+17T2 |
| 23 | 1−1.76T+23T2 |
| 29 | 1−0.854T+29T2 |
| 31 | 1+4.38T+31T2 |
| 37 | 1+4.70T+37T2 |
| 41 | 1−1.14T+41T2 |
| 43 | 1+3.52T+43T2 |
| 47 | 1−7.47T+47T2 |
| 53 | 1+10.3T+53T2 |
| 59 | 1−3T+59T2 |
| 61 | 1+15.1T+61T2 |
| 67 | 1−2.85T+67T2 |
| 71 | 1−15.1T+71T2 |
| 73 | 1−2.32T+73T2 |
| 79 | 1−0.472T+79T2 |
| 83 | 1+9.56T+83T2 |
| 89 | 1+5.70T+89T2 |
| 97 | 1+9T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.43542493027224997737351180844, −6.63673183425818516865636857408, −5.89727521308227951996512601245, −5.23570394305607498854212253347, −4.85098158804577420470472341087, −3.80091515961461830913863109897, −2.83129301551225469370569455608, −2.19402882379646767640728040003, −1.39528374035394068376229403899, 0,
1.39528374035394068376229403899, 2.19402882379646767640728040003, 2.83129301551225469370569455608, 3.80091515961461830913863109897, 4.85098158804577420470472341087, 5.23570394305607498854212253347, 5.89727521308227951996512601245, 6.63673183425818516865636857408, 7.43542493027224997737351180844