L(s) = 1 | − 2·5-s − 7-s + 2·11-s − 3.12·13-s − 3.12·17-s − 19-s − 7.12·23-s − 25-s + 9.12·29-s − 1.12·31-s + 2·35-s − 0.876·37-s − 8.24·41-s + 4·43-s + 49-s + 5.12·53-s − 4·55-s + 6.24·59-s − 2·61-s + 6.24·65-s − 14.2·67-s − 9.36·71-s − 10·73-s − 2·77-s + 13.1·79-s − 9.12·83-s + 6.24·85-s + ⋯ |
L(s) = 1 | − 0.894·5-s − 0.377·7-s + 0.603·11-s − 0.866·13-s − 0.757·17-s − 0.229·19-s − 1.48·23-s − 0.200·25-s + 1.69·29-s − 0.201·31-s + 0.338·35-s − 0.144·37-s − 1.28·41-s + 0.609·43-s + 0.142·49-s + 0.703·53-s − 0.539·55-s + 0.813·59-s − 0.256·61-s + 0.774·65-s − 1.74·67-s − 1.11·71-s − 1.17·73-s − 0.227·77-s + 1.47·79-s − 1.00·83-s + 0.677·85-s + ⋯ |
Λ(s)=(=(9576s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(9576s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.8519307564 |
L(21) |
≈ |
0.8519307564 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+T |
| 19 | 1+T |
good | 5 | 1+2T+5T2 |
| 11 | 1−2T+11T2 |
| 13 | 1+3.12T+13T2 |
| 17 | 1+3.12T+17T2 |
| 23 | 1+7.12T+23T2 |
| 29 | 1−9.12T+29T2 |
| 31 | 1+1.12T+31T2 |
| 37 | 1+0.876T+37T2 |
| 41 | 1+8.24T+41T2 |
| 43 | 1−4T+43T2 |
| 47 | 1+47T2 |
| 53 | 1−5.12T+53T2 |
| 59 | 1−6.24T+59T2 |
| 61 | 1+2T+61T2 |
| 67 | 1+14.2T+67T2 |
| 71 | 1+9.36T+71T2 |
| 73 | 1+10T+73T2 |
| 79 | 1−13.1T+79T2 |
| 83 | 1+9.12T+83T2 |
| 89 | 1+0.246T+89T2 |
| 97 | 1−8.24T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.60358830764236590411092016299, −7.07474396074337534150988546293, −6.39649675499337916231273539640, −5.75058348493841252944320472383, −4.66293939515861899167726718694, −4.26791466512881524167539492356, −3.51297941035596890293402275489, −2.66144195653829354079566755847, −1.76980991153540768376863713602, −0.42607731870913130939555465244,
0.42607731870913130939555465244, 1.76980991153540768376863713602, 2.66144195653829354079566755847, 3.51297941035596890293402275489, 4.26791466512881524167539492356, 4.66293939515861899167726718694, 5.75058348493841252944320472383, 6.39649675499337916231273539640, 7.07474396074337534150988546293, 7.60358830764236590411092016299