L(s) = 1 | + 3-s + 5-s − 4·7-s + 9-s + 6·13-s + 15-s − 2·17-s + 4·19-s − 4·21-s + 8·23-s + 25-s + 27-s + 6·29-s − 4·35-s + 6·37-s + 6·39-s + 10·41-s − 4·43-s + 45-s − 8·47-s + 9·49-s − 2·51-s − 10·53-s + 4·57-s − 6·61-s − 4·63-s + 6·65-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.447·5-s − 1.51·7-s + 1/3·9-s + 1.66·13-s + 0.258·15-s − 0.485·17-s + 0.917·19-s − 0.872·21-s + 1.66·23-s + 1/5·25-s + 0.192·27-s + 1.11·29-s − 0.676·35-s + 0.986·37-s + 0.960·39-s + 1.56·41-s − 0.609·43-s + 0.149·45-s − 1.16·47-s + 9/7·49-s − 0.280·51-s − 1.37·53-s + 0.529·57-s − 0.768·61-s − 0.503·63-s + 0.744·65-s + ⋯ |
Λ(s)=(=(960s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(960s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.977535250 |
L(21) |
≈ |
1.977535250 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 5 | 1−T |
good | 7 | 1+4T+pT2 |
| 11 | 1+pT2 |
| 13 | 1−6T+pT2 |
| 17 | 1+2T+pT2 |
| 19 | 1−4T+pT2 |
| 23 | 1−8T+pT2 |
| 29 | 1−6T+pT2 |
| 31 | 1+pT2 |
| 37 | 1−6T+pT2 |
| 41 | 1−10T+pT2 |
| 43 | 1+4T+pT2 |
| 47 | 1+8T+pT2 |
| 53 | 1+10T+pT2 |
| 59 | 1+pT2 |
| 61 | 1+6T+pT2 |
| 67 | 1+4T+pT2 |
| 71 | 1+pT2 |
| 73 | 1+14T+pT2 |
| 79 | 1+16T+pT2 |
| 83 | 1−12T+pT2 |
| 89 | 1−2T+pT2 |
| 97 | 1−2T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.843986395238725085410957067541, −9.192233856919801710529869731712, −8.620274137521206455931441584726, −7.45166089807995498253197140252, −6.49211773175788373093258725474, −6.00871420537581383609527234257, −4.63883887090438359185158186412, −3.39015414339768891989414504202, −2.85965731186513405981248890470, −1.16849564057756810686392475492,
1.16849564057756810686392475492, 2.85965731186513405981248890470, 3.39015414339768891989414504202, 4.63883887090438359185158186412, 6.00871420537581383609527234257, 6.49211773175788373093258725474, 7.45166089807995498253197140252, 8.620274137521206455931441584726, 9.192233856919801710529869731712, 9.843986395238725085410957067541