L(s) = 1 | − 3-s + 5-s + 4·7-s + 9-s + 4·11-s − 6·13-s − 15-s + 2·17-s + 4·19-s − 4·21-s + 25-s − 27-s − 10·29-s + 4·31-s − 4·33-s + 4·35-s + 10·37-s + 6·39-s + 2·41-s − 4·43-s + 45-s − 8·47-s + 9·49-s − 2·51-s − 2·53-s + 4·55-s − 4·57-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 0.447·5-s + 1.51·7-s + 1/3·9-s + 1.20·11-s − 1.66·13-s − 0.258·15-s + 0.485·17-s + 0.917·19-s − 0.872·21-s + 1/5·25-s − 0.192·27-s − 1.85·29-s + 0.718·31-s − 0.696·33-s + 0.676·35-s + 1.64·37-s + 0.960·39-s + 0.312·41-s − 0.609·43-s + 0.149·45-s − 1.16·47-s + 9/7·49-s − 0.280·51-s − 0.274·53-s + 0.539·55-s − 0.529·57-s + ⋯ |
Λ(s)=(=(960s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(960s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.743125803 |
L(21) |
≈ |
1.743125803 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+T |
| 5 | 1−T |
good | 7 | 1−4T+pT2 |
| 11 | 1−4T+pT2 |
| 13 | 1+6T+pT2 |
| 17 | 1−2T+pT2 |
| 19 | 1−4T+pT2 |
| 23 | 1+pT2 |
| 29 | 1+10T+pT2 |
| 31 | 1−4T+pT2 |
| 37 | 1−10T+pT2 |
| 41 | 1−2T+pT2 |
| 43 | 1+4T+pT2 |
| 47 | 1+8T+pT2 |
| 53 | 1+2T+pT2 |
| 59 | 1−12T+pT2 |
| 61 | 1−10T+pT2 |
| 67 | 1−12T+pT2 |
| 71 | 1+pT2 |
| 73 | 1−10T+pT2 |
| 79 | 1−4T+pT2 |
| 83 | 1−4T+pT2 |
| 89 | 1+6T+pT2 |
| 97 | 1+14T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.758345846761255680723166486652, −9.569887168096234669182184873626, −8.218385815535771240939930654544, −7.49235926303250200960974861538, −6.65509689812873112624861887690, −5.45857154341122253575185626745, −4.97527404703815748732112348741, −3.93952361309394612597846303015, −2.28452944523597307623702961432, −1.18879387693747021147526651062,
1.18879387693747021147526651062, 2.28452944523597307623702961432, 3.93952361309394612597846303015, 4.97527404703815748732112348741, 5.45857154341122253575185626745, 6.65509689812873112624861887690, 7.49235926303250200960974861538, 8.218385815535771240939930654544, 9.569887168096234669182184873626, 9.758345846761255680723166486652