Properties

Label 2-960-1.1-c3-0-37
Degree $2$
Conductor $960$
Sign $-1$
Analytic cond. $56.6418$
Root an. cond. $7.52607$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 5·5-s − 16·7-s + 9·9-s + 28·11-s + 26·13-s − 15·15-s − 62·17-s + 68·19-s − 48·21-s − 208·23-s + 25·25-s + 27·27-s + 58·29-s + 160·31-s + 84·33-s + 80·35-s − 270·37-s + 78·39-s + 282·41-s − 76·43-s − 45·45-s − 280·47-s − 87·49-s − 186·51-s + 210·53-s − 140·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 0.863·7-s + 1/3·9-s + 0.767·11-s + 0.554·13-s − 0.258·15-s − 0.884·17-s + 0.821·19-s − 0.498·21-s − 1.88·23-s + 1/5·25-s + 0.192·27-s + 0.371·29-s + 0.926·31-s + 0.443·33-s + 0.386·35-s − 1.19·37-s + 0.320·39-s + 1.07·41-s − 0.269·43-s − 0.149·45-s − 0.868·47-s − 0.253·49-s − 0.510·51-s + 0.544·53-s − 0.343·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(960\)    =    \(2^{6} \cdot 3 \cdot 5\)
Sign: $-1$
Analytic conductor: \(56.6418\)
Root analytic conductor: \(7.52607\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 960,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - p T \)
5 \( 1 + p T \)
good7 \( 1 + 16 T + p^{3} T^{2} \)
11 \( 1 - 28 T + p^{3} T^{2} \)
13 \( 1 - 2 p T + p^{3} T^{2} \)
17 \( 1 + 62 T + p^{3} T^{2} \)
19 \( 1 - 68 T + p^{3} T^{2} \)
23 \( 1 + 208 T + p^{3} T^{2} \)
29 \( 1 - 2 p T + p^{3} T^{2} \)
31 \( 1 - 160 T + p^{3} T^{2} \)
37 \( 1 + 270 T + p^{3} T^{2} \)
41 \( 1 - 282 T + p^{3} T^{2} \)
43 \( 1 + 76 T + p^{3} T^{2} \)
47 \( 1 + 280 T + p^{3} T^{2} \)
53 \( 1 - 210 T + p^{3} T^{2} \)
59 \( 1 + 196 T + p^{3} T^{2} \)
61 \( 1 + 742 T + p^{3} T^{2} \)
67 \( 1 + 836 T + p^{3} T^{2} \)
71 \( 1 + 504 T + p^{3} T^{2} \)
73 \( 1 + 1062 T + p^{3} T^{2} \)
79 \( 1 - 768 T + p^{3} T^{2} \)
83 \( 1 - 1052 T + p^{3} T^{2} \)
89 \( 1 + 726 T + p^{3} T^{2} \)
97 \( 1 + 1406 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.198995920129466640909176038576, −8.458099965942092326622574584209, −7.61113537146148828273944719726, −6.64606337476278320033133388873, −6.00346406290803355038183812630, −4.51317083632006878510715406625, −3.73950047516576550533127127069, −2.86977552578676001773957574844, −1.50865854654502688425095991645, 0, 1.50865854654502688425095991645, 2.86977552578676001773957574844, 3.73950047516576550533127127069, 4.51317083632006878510715406625, 6.00346406290803355038183812630, 6.64606337476278320033133388873, 7.61113537146148828273944719726, 8.458099965942092326622574584209, 9.198995920129466640909176038576

Graph of the $Z$-function along the critical line