L(s) = 1 | + 3·3-s − 5·5-s − 16·7-s + 9·9-s + 28·11-s + 26·13-s − 15·15-s − 62·17-s + 68·19-s − 48·21-s − 208·23-s + 25·25-s + 27·27-s + 58·29-s + 160·31-s + 84·33-s + 80·35-s − 270·37-s + 78·39-s + 282·41-s − 76·43-s − 45·45-s − 280·47-s − 87·49-s − 186·51-s + 210·53-s − 140·55-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 0.447·5-s − 0.863·7-s + 1/3·9-s + 0.767·11-s + 0.554·13-s − 0.258·15-s − 0.884·17-s + 0.821·19-s − 0.498·21-s − 1.88·23-s + 1/5·25-s + 0.192·27-s + 0.371·29-s + 0.926·31-s + 0.443·33-s + 0.386·35-s − 1.19·37-s + 0.320·39-s + 1.07·41-s − 0.269·43-s − 0.149·45-s − 0.868·47-s − 0.253·49-s − 0.510·51-s + 0.544·53-s − 0.343·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - p T \) |
| 5 | \( 1 + p T \) |
good | 7 | \( 1 + 16 T + p^{3} T^{2} \) |
| 11 | \( 1 - 28 T + p^{3} T^{2} \) |
| 13 | \( 1 - 2 p T + p^{3} T^{2} \) |
| 17 | \( 1 + 62 T + p^{3} T^{2} \) |
| 19 | \( 1 - 68 T + p^{3} T^{2} \) |
| 23 | \( 1 + 208 T + p^{3} T^{2} \) |
| 29 | \( 1 - 2 p T + p^{3} T^{2} \) |
| 31 | \( 1 - 160 T + p^{3} T^{2} \) |
| 37 | \( 1 + 270 T + p^{3} T^{2} \) |
| 41 | \( 1 - 282 T + p^{3} T^{2} \) |
| 43 | \( 1 + 76 T + p^{3} T^{2} \) |
| 47 | \( 1 + 280 T + p^{3} T^{2} \) |
| 53 | \( 1 - 210 T + p^{3} T^{2} \) |
| 59 | \( 1 + 196 T + p^{3} T^{2} \) |
| 61 | \( 1 + 742 T + p^{3} T^{2} \) |
| 67 | \( 1 + 836 T + p^{3} T^{2} \) |
| 71 | \( 1 + 504 T + p^{3} T^{2} \) |
| 73 | \( 1 + 1062 T + p^{3} T^{2} \) |
| 79 | \( 1 - 768 T + p^{3} T^{2} \) |
| 83 | \( 1 - 1052 T + p^{3} T^{2} \) |
| 89 | \( 1 + 726 T + p^{3} T^{2} \) |
| 97 | \( 1 + 1406 T + p^{3} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.198995920129466640909176038576, −8.458099965942092326622574584209, −7.61113537146148828273944719726, −6.64606337476278320033133388873, −6.00346406290803355038183812630, −4.51317083632006878510715406625, −3.73950047516576550533127127069, −2.86977552578676001773957574844, −1.50865854654502688425095991645, 0,
1.50865854654502688425095991645, 2.86977552578676001773957574844, 3.73950047516576550533127127069, 4.51317083632006878510715406625, 6.00346406290803355038183812630, 6.64606337476278320033133388873, 7.61113537146148828273944719726, 8.458099965942092326622574584209, 9.198995920129466640909176038576