L(s) = 1 | + 3·3-s − 5·5-s + 9·9-s − 15·15-s − 14·17-s + 22·19-s + 34·23-s + 25·25-s + 27·27-s + 2·31-s − 45·45-s − 14·47-s + 49·49-s − 42·51-s + 86·53-s + 66·57-s + 118·61-s + 102·69-s + 75·75-s + 98·79-s + 81·81-s − 154·83-s + 70·85-s + 6·93-s − 110·95-s − 106·107-s + 22·109-s + ⋯ |
L(s) = 1 | + 3-s − 5-s + 9-s − 15-s − 0.823·17-s + 1.15·19-s + 1.47·23-s + 25-s + 27-s + 2/31·31-s − 45-s − 0.297·47-s + 49-s − 0.823·51-s + 1.62·53-s + 1.15·57-s + 1.93·61-s + 1.47·69-s + 75-s + 1.24·79-s + 81-s − 1.85·83-s + 0.823·85-s + 2/31·93-s − 1.15·95-s − 0.990·107-s + 0.201·109-s + ⋯ |
Λ(s)=(=(960s/2ΓC(s)L(s)Λ(3−s)
Λ(s)=(=(960s/2ΓC(s+1)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
960
= 26⋅3⋅5
|
Sign: |
1
|
Analytic conductor: |
26.1581 |
Root analytic conductor: |
5.11449 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ960(449,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 960, ( :1), 1)
|
Particular Values
L(23) |
≈ |
2.406862285 |
L(21) |
≈ |
2.406862285 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−pT |
| 5 | 1+pT |
good | 7 | (1−pT)(1+pT) |
| 11 | (1−pT)(1+pT) |
| 13 | (1−pT)(1+pT) |
| 17 | 1+14T+p2T2 |
| 19 | 1−22T+p2T2 |
| 23 | 1−34T+p2T2 |
| 29 | (1−pT)(1+pT) |
| 31 | 1−2T+p2T2 |
| 37 | (1−pT)(1+pT) |
| 41 | (1−pT)(1+pT) |
| 43 | (1−pT)(1+pT) |
| 47 | 1+14T+p2T2 |
| 53 | 1−86T+p2T2 |
| 59 | (1−pT)(1+pT) |
| 61 | 1−118T+p2T2 |
| 67 | (1−pT)(1+pT) |
| 71 | (1−pT)(1+pT) |
| 73 | (1−pT)(1+pT) |
| 79 | 1−98T+p2T2 |
| 83 | 1+154T+p2T2 |
| 89 | (1−pT)(1+pT) |
| 97 | (1−pT)(1+pT) |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.650656002337281562464649995460, −8.856335304749391979132766625134, −8.268705780996585607452380261920, −7.28880001385535669069123991695, −6.88117166867882854200098686257, −5.26939005940498076423117612453, −4.30022219795605510970309119756, −3.44770007742856349128488020872, −2.53297145717665903502010451478, −0.964153572142294797891098416898,
0.964153572142294797891098416898, 2.53297145717665903502010451478, 3.44770007742856349128488020872, 4.30022219795605510970309119756, 5.26939005940498076423117612453, 6.88117166867882854200098686257, 7.28880001385535669069123991695, 8.268705780996585607452380261920, 8.856335304749391979132766625134, 9.650656002337281562464649995460