L(s) = 1 | + (−0.707 + 0.707i)3-s + (−0.707 − 0.707i)5-s − 1.00i·9-s + 1.00·15-s + 1.41·17-s + (1 − i)19-s − 1.41i·23-s + 1.00i·25-s + (0.707 + 0.707i)27-s + (−0.707 + 0.707i)45-s + 1.41·47-s − 49-s + (−1.00 + 1.00i)51-s + 1.41i·57-s + (1 − i)61-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)3-s + (−0.707 − 0.707i)5-s − 1.00i·9-s + 1.00·15-s + 1.41·17-s + (1 − i)19-s − 1.41i·23-s + 1.00i·25-s + (0.707 + 0.707i)27-s + (−0.707 + 0.707i)45-s + 1.41·47-s − 49-s + (−1.00 + 1.00i)51-s + 1.41i·57-s + (1 − i)61-s + ⋯ |
Λ(s)=(=(960s/2ΓC(s)L(s)(0.923+0.382i)Λ(1−s)
Λ(s)=(=(960s/2ΓC(s)L(s)(0.923+0.382i)Λ(1−s)
Degree: |
2 |
Conductor: |
960
= 26⋅3⋅5
|
Sign: |
0.923+0.382i
|
Analytic conductor: |
0.479102 |
Root analytic conductor: |
0.692172 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ960(689,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 960, ( :0), 0.923+0.382i)
|
Particular Values
L(21) |
≈ |
0.7156592348 |
L(21) |
≈ |
0.7156592348 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(0.707−0.707i)T |
| 5 | 1+(0.707+0.707i)T |
good | 7 | 1+T2 |
| 11 | 1−iT2 |
| 13 | 1+iT2 |
| 17 | 1−1.41T+T2 |
| 19 | 1+(−1+i)T−iT2 |
| 23 | 1+1.41iT−T2 |
| 29 | 1+iT2 |
| 31 | 1+T2 |
| 37 | 1−iT2 |
| 41 | 1+T2 |
| 43 | 1−iT2 |
| 47 | 1−1.41T+T2 |
| 53 | 1+iT2 |
| 59 | 1−iT2 |
| 61 | 1+(−1+i)T−iT2 |
| 67 | 1+iT2 |
| 71 | 1+T2 |
| 73 | 1+T2 |
| 79 | 1+2T+T2 |
| 83 | 1−iT2 |
| 89 | 1+T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.17185099405675579405742713151, −9.412012125410053695396653930178, −8.635805100144743904129373147934, −7.69185524582873840404655483806, −6.75078818536465880981433340165, −5.59723686904818904174306294797, −4.94039792207487197577294687028, −4.07843222763765551901920781336, −3.07027421732028272537879621192, −0.894775071984483033248944915766,
1.37174117917484634184311467975, 2.95074215193585422544786187958, 3.93439942715813729771767355662, 5.34513621981013508106646170895, 5.93501165329974293263810987650, 7.09789416649322380977365357529, 7.58000752147327875751370612629, 8.255737972740826183164743737639, 9.698155205188167412355580046299, 10.36558232986173764903152328891