L(s) = 1 | + (0.707 + 0.707i)3-s + (0.707 − 0.707i)5-s + 1.00i·9-s + 1.00·15-s − 1.41·17-s + (1 + i)19-s − 1.41i·23-s − 1.00i·25-s + (−0.707 + 0.707i)27-s + (0.707 + 0.707i)45-s − 1.41·47-s − 49-s + (−1.00 − 1.00i)51-s + 1.41i·57-s + (1 + i)61-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)3-s + (0.707 − 0.707i)5-s + 1.00i·9-s + 1.00·15-s − 1.41·17-s + (1 + i)19-s − 1.41i·23-s − 1.00i·25-s + (−0.707 + 0.707i)27-s + (0.707 + 0.707i)45-s − 1.41·47-s − 49-s + (−1.00 − 1.00i)51-s + 1.41i·57-s + (1 + i)61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.923 - 0.382i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.923 - 0.382i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.375047986\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.375047986\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.707 - 0.707i)T \) |
| 5 | \( 1 + (-0.707 + 0.707i)T \) |
good | 7 | \( 1 + T^{2} \) |
| 11 | \( 1 + iT^{2} \) |
| 13 | \( 1 - iT^{2} \) |
| 17 | \( 1 + 1.41T + T^{2} \) |
| 19 | \( 1 + (-1 - i)T + iT^{2} \) |
| 23 | \( 1 + 1.41iT - T^{2} \) |
| 29 | \( 1 - iT^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + 1.41T + T^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 + iT^{2} \) |
| 61 | \( 1 + (-1 - i)T + iT^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 + 2T + T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.05138144830170383170687185455, −9.496499585742355701194734615427, −8.635544803135460749451788695433, −8.160980986375860629738448735087, −6.89582988152375854335416825106, −5.82863166938249298973048772723, −4.87735690847406969783657677496, −4.16669900258668777363601989195, −2.88035360203597166748712738625, −1.79310339574997505454639337843,
1.65781942631712337322272859052, 2.67837960823390658538611852837, 3.54961597074933272583482833432, 5.00721713175100405242841594570, 6.14003037804188266670919153498, 6.88848049230921251143996625197, 7.49156758015824825761964801315, 8.562263352978267541676388236071, 9.386362882517186432702955875513, 9.894572229778655794612678331111