L(s) = 1 | + (0.707 + 0.707i)3-s + (0.707 − 0.707i)5-s + 1.00i·9-s + 1.00·15-s − 1.41·17-s + (1 + i)19-s − 1.41i·23-s − 1.00i·25-s + (−0.707 + 0.707i)27-s + (0.707 + 0.707i)45-s − 1.41·47-s − 49-s + (−1.00 − 1.00i)51-s + 1.41i·57-s + (1 + i)61-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)3-s + (0.707 − 0.707i)5-s + 1.00i·9-s + 1.00·15-s − 1.41·17-s + (1 + i)19-s − 1.41i·23-s − 1.00i·25-s + (−0.707 + 0.707i)27-s + (0.707 + 0.707i)45-s − 1.41·47-s − 49-s + (−1.00 − 1.00i)51-s + 1.41i·57-s + (1 + i)61-s + ⋯ |
Λ(s)=(=(960s/2ΓC(s)L(s)(0.923−0.382i)Λ(1−s)
Λ(s)=(=(960s/2ΓC(s)L(s)(0.923−0.382i)Λ(1−s)
Degree: |
2 |
Conductor: |
960
= 26⋅3⋅5
|
Sign: |
0.923−0.382i
|
Analytic conductor: |
0.479102 |
Root analytic conductor: |
0.692172 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ960(209,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 960, ( :0), 0.923−0.382i)
|
Particular Values
L(21) |
≈ |
1.375047986 |
L(21) |
≈ |
1.375047986 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−0.707−0.707i)T |
| 5 | 1+(−0.707+0.707i)T |
good | 7 | 1+T2 |
| 11 | 1+iT2 |
| 13 | 1−iT2 |
| 17 | 1+1.41T+T2 |
| 19 | 1+(−1−i)T+iT2 |
| 23 | 1+1.41iT−T2 |
| 29 | 1−iT2 |
| 31 | 1+T2 |
| 37 | 1+iT2 |
| 41 | 1+T2 |
| 43 | 1+iT2 |
| 47 | 1+1.41T+T2 |
| 53 | 1−iT2 |
| 59 | 1+iT2 |
| 61 | 1+(−1−i)T+iT2 |
| 67 | 1−iT2 |
| 71 | 1+T2 |
| 73 | 1+T2 |
| 79 | 1+2T+T2 |
| 83 | 1+iT2 |
| 89 | 1+T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.05138144830170383170687185455, −9.496499585742355701194734615427, −8.635544803135460749451788695433, −8.160980986375860629738448735087, −6.89582988152375854335416825106, −5.82863166938249298973048772723, −4.87735690847406969783657677496, −4.16669900258668777363601989195, −2.88035360203597166748712738625, −1.79310339574997505454639337843,
1.65781942631712337322272859052, 2.67837960823390658538611852837, 3.54961597074933272583482833432, 5.00721713175100405242841594570, 6.14003037804188266670919153498, 6.88848049230921251143996625197, 7.49156758015824825761964801315, 8.562263352978267541676388236071, 9.386362882517186432702955875513, 9.894572229778655794612678331111