L(s) = 1 | + (−0.195 − 0.980i)2-s + (0.831 + 0.555i)3-s + (−0.923 + 0.382i)4-s + (0.980 + 0.195i)5-s + (0.382 − 0.923i)6-s + (0.555 + 0.831i)8-s + (0.382 + 0.923i)9-s − i·10-s + (−0.980 − 0.195i)12-s + (0.707 + 0.707i)15-s + (0.707 − 0.707i)16-s + (−1.38 + 1.38i)17-s + (0.831 − 0.555i)18-s + (−0.216 − 1.08i)19-s + (−0.980 + 0.195i)20-s + ⋯ |
L(s) = 1 | + (−0.195 − 0.980i)2-s + (0.831 + 0.555i)3-s + (−0.923 + 0.382i)4-s + (0.980 + 0.195i)5-s + (0.382 − 0.923i)6-s + (0.555 + 0.831i)8-s + (0.382 + 0.923i)9-s − i·10-s + (−0.980 − 0.195i)12-s + (0.707 + 0.707i)15-s + (0.707 − 0.707i)16-s + (−1.38 + 1.38i)17-s + (0.831 − 0.555i)18-s + (−0.216 − 1.08i)19-s + (−0.980 + 0.195i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.956 + 0.290i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.956 + 0.290i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.248578380\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.248578380\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.195 + 0.980i)T \) |
| 3 | \( 1 + (-0.831 - 0.555i)T \) |
| 5 | \( 1 + (-0.980 - 0.195i)T \) |
good | 7 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 11 | \( 1 + (0.382 - 0.923i)T^{2} \) |
| 13 | \( 1 + (-0.923 + 0.382i)T^{2} \) |
| 17 | \( 1 + (1.38 - 1.38i)T - iT^{2} \) |
| 19 | \( 1 + (0.216 + 1.08i)T + (-0.923 + 0.382i)T^{2} \) |
| 23 | \( 1 + (0.360 - 0.149i)T + (0.707 - 0.707i)T^{2} \) |
| 29 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 31 | \( 1 + 1.84iT - T^{2} \) |
| 37 | \( 1 + (0.923 + 0.382i)T^{2} \) |
| 41 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 43 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
| 47 | \( 1 + (-1.17 + 1.17i)T - iT^{2} \) |
| 53 | \( 1 + (0.425 + 0.636i)T + (-0.382 + 0.923i)T^{2} \) |
| 59 | \( 1 + (-0.923 - 0.382i)T^{2} \) |
| 61 | \( 1 + (-0.923 - 0.617i)T + (0.382 + 0.923i)T^{2} \) |
| 67 | \( 1 + (-0.382 - 0.923i)T^{2} \) |
| 71 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 73 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 79 | \( 1 + (1 + i)T + iT^{2} \) |
| 83 | \( 1 + (-0.149 - 0.750i)T + (-0.923 + 0.382i)T^{2} \) |
| 89 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.16203082594990455231089736433, −9.444196495218162976854878256473, −8.812113211353761383045791250777, −8.135381427092924445131068106835, −6.89042203985823997692921466181, −5.65857110441289903918475932802, −4.56082797500166697892004162595, −3.78605830574531027549749174681, −2.52641905046569448820966043719, −1.93930814312629708338747869783,
1.45832731178677814512245356744, 2.75969476923195816037271619409, 4.21354241241027332760214610515, 5.21592302356782620196135050640, 6.28576833617730507630132936869, 6.83787603842275751557321520410, 7.74430618963198388583800835426, 8.652858141990657970756101795716, 9.178514027191747004828402249546, 9.853707363287675848902197133692