L(s) = 1 | + (−0.195 − 0.980i)2-s + (0.831 + 0.555i)3-s + (−0.923 + 0.382i)4-s + (0.980 + 0.195i)5-s + (0.382 − 0.923i)6-s + (0.555 + 0.831i)8-s + (0.382 + 0.923i)9-s − i·10-s + (−0.980 − 0.195i)12-s + (0.707 + 0.707i)15-s + (0.707 − 0.707i)16-s + (−1.38 + 1.38i)17-s + (0.831 − 0.555i)18-s + (−0.216 − 1.08i)19-s + (−0.980 + 0.195i)20-s + ⋯ |
L(s) = 1 | + (−0.195 − 0.980i)2-s + (0.831 + 0.555i)3-s + (−0.923 + 0.382i)4-s + (0.980 + 0.195i)5-s + (0.382 − 0.923i)6-s + (0.555 + 0.831i)8-s + (0.382 + 0.923i)9-s − i·10-s + (−0.980 − 0.195i)12-s + (0.707 + 0.707i)15-s + (0.707 − 0.707i)16-s + (−1.38 + 1.38i)17-s + (0.831 − 0.555i)18-s + (−0.216 − 1.08i)19-s + (−0.980 + 0.195i)20-s + ⋯ |
Λ(s)=(=(960s/2ΓC(s)L(s)(0.956+0.290i)Λ(1−s)
Λ(s)=(=(960s/2ΓC(s)L(s)(0.956+0.290i)Λ(1−s)
Degree: |
2 |
Conductor: |
960
= 26⋅3⋅5
|
Sign: |
0.956+0.290i
|
Analytic conductor: |
0.479102 |
Root analytic conductor: |
0.692172 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ960(389,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 960, ( :0), 0.956+0.290i)
|
Particular Values
L(21) |
≈ |
1.248578380 |
L(21) |
≈ |
1.248578380 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.195+0.980i)T |
| 3 | 1+(−0.831−0.555i)T |
| 5 | 1+(−0.980−0.195i)T |
good | 7 | 1+(0.707+0.707i)T2 |
| 11 | 1+(0.382−0.923i)T2 |
| 13 | 1+(−0.923+0.382i)T2 |
| 17 | 1+(1.38−1.38i)T−iT2 |
| 19 | 1+(0.216+1.08i)T+(−0.923+0.382i)T2 |
| 23 | 1+(0.360−0.149i)T+(0.707−0.707i)T2 |
| 29 | 1+(0.382+0.923i)T2 |
| 31 | 1+1.84iT−T2 |
| 37 | 1+(0.923+0.382i)T2 |
| 41 | 1+(−0.707+0.707i)T2 |
| 43 | 1+(−0.382+0.923i)T2 |
| 47 | 1+(−1.17+1.17i)T−iT2 |
| 53 | 1+(0.425+0.636i)T+(−0.382+0.923i)T2 |
| 59 | 1+(−0.923−0.382i)T2 |
| 61 | 1+(−0.923−0.617i)T+(0.382+0.923i)T2 |
| 67 | 1+(−0.382−0.923i)T2 |
| 71 | 1+(0.707+0.707i)T2 |
| 73 | 1+(0.707−0.707i)T2 |
| 79 | 1+(1+i)T+iT2 |
| 83 | 1+(−0.149−0.750i)T+(−0.923+0.382i)T2 |
| 89 | 1+(−0.707−0.707i)T2 |
| 97 | 1+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.16203082594990455231089736433, −9.444196495218162976854878256473, −8.812113211353761383045791250777, −8.135381427092924445131068106835, −6.89042203985823997692921466181, −5.65857110441289903918475932802, −4.56082797500166697892004162595, −3.78605830574531027549749174681, −2.52641905046569448820966043719, −1.93930814312629708338747869783,
1.45832731178677814512245356744, 2.75969476923195816037271619409, 4.21354241241027332760214610515, 5.21592302356782620196135050640, 6.28576833617730507630132936869, 6.83787603842275751557321520410, 7.74430618963198388583800835426, 8.652858141990657970756101795716, 9.178514027191747004828402249546, 9.853707363287675848902197133692