L(s) = 1 | + (−0.831 − 0.555i)2-s + (−0.980 + 0.195i)3-s + (0.382 + 0.923i)4-s + (0.555 + 0.831i)5-s + (0.923 + 0.382i)6-s + (0.195 − 0.980i)8-s + (0.923 − 0.382i)9-s − i·10-s + (−0.555 − 0.831i)12-s + (−0.707 − 0.707i)15-s + (−0.707 + 0.707i)16-s + (0.785 − 0.785i)17-s + (−0.980 − 0.195i)18-s + (−0.324 − 0.216i)19-s + (−0.555 + 0.831i)20-s + ⋯ |
L(s) = 1 | + (−0.831 − 0.555i)2-s + (−0.980 + 0.195i)3-s + (0.382 + 0.923i)4-s + (0.555 + 0.831i)5-s + (0.923 + 0.382i)6-s + (0.195 − 0.980i)8-s + (0.923 − 0.382i)9-s − i·10-s + (−0.555 − 0.831i)12-s + (−0.707 − 0.707i)15-s + (−0.707 + 0.707i)16-s + (0.785 − 0.785i)17-s + (−0.980 − 0.195i)18-s + (−0.324 − 0.216i)19-s + (−0.555 + 0.831i)20-s + ⋯ |
Λ(s)=(=(960s/2ΓC(s)L(s)(0.881−0.471i)Λ(1−s)
Λ(s)=(=(960s/2ΓC(s)L(s)(0.881−0.471i)Λ(1−s)
Degree: |
2 |
Conductor: |
960
= 26⋅3⋅5
|
Sign: |
0.881−0.471i
|
Analytic conductor: |
0.479102 |
Root analytic conductor: |
0.692172 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ960(629,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 960, ( :0), 0.881−0.471i)
|
Particular Values
L(21) |
≈ |
0.5633085570 |
L(21) |
≈ |
0.5633085570 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.831+0.555i)T |
| 3 | 1+(0.980−0.195i)T |
| 5 | 1+(−0.555−0.831i)T |
good | 7 | 1+(−0.707−0.707i)T2 |
| 11 | 1+(0.923+0.382i)T2 |
| 13 | 1+(0.382+0.923i)T2 |
| 17 | 1+(−0.785+0.785i)T−iT2 |
| 19 | 1+(0.324+0.216i)T+(0.382+0.923i)T2 |
| 23 | 1+(−0.636−1.53i)T+(−0.707+0.707i)T2 |
| 29 | 1+(0.923−0.382i)T2 |
| 31 | 1−0.765iT−T2 |
| 37 | 1+(−0.382+0.923i)T2 |
| 41 | 1+(0.707−0.707i)T2 |
| 43 | 1+(−0.923−0.382i)T2 |
| 47 | 1+(−1.38+1.38i)T−iT2 |
| 53 | 1+(0.360−1.81i)T+(−0.923−0.382i)T2 |
| 59 | 1+(0.382−0.923i)T2 |
| 61 | 1+(0.382−0.0761i)T+(0.923−0.382i)T2 |
| 67 | 1+(−0.923+0.382i)T2 |
| 71 | 1+(−0.707−0.707i)T2 |
| 73 | 1+(−0.707+0.707i)T2 |
| 79 | 1+(1+i)T+iT2 |
| 83 | 1+(−1.53−1.02i)T+(0.382+0.923i)T2 |
| 89 | 1+(0.707+0.707i)T2 |
| 97 | 1+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.44962847862682044303771310985, −9.601705524758622060245368740273, −9.044713987991844106858042146294, −7.52766514209565026159078558523, −7.11482739472531021321192228959, −6.11089198829179025433546590814, −5.18799122950868329483236083859, −3.81167825204261864475170281853, −2.78847861580325377275382927568, −1.36507989036505711871277021616,
0.935864577919110723324970379796, 2.13349022541472722125959876556, 4.34460785101279142741306946355, 5.25734134235439586665093601918, 5.98759864803307841254874746924, 6.62914582419739990277336667158, 7.70872541846262633005002070318, 8.466286843253908714713983970327, 9.336223730049960122066925914546, 10.20112166021110365662864065613