L(s) = 1 | + (−0.980 − 0.195i)2-s + (0.555 + 0.831i)3-s + (0.923 + 0.382i)4-s + (−0.195 − 0.980i)5-s + (−0.382 − 0.923i)6-s + (−0.831 − 0.555i)8-s + (−0.382 + 0.923i)9-s + i·10-s + (0.195 + 0.980i)12-s + (0.707 − 0.707i)15-s + (0.707 + 0.707i)16-s + (0.275 + 0.275i)17-s + (0.555 − 0.831i)18-s + (1.63 + 0.324i)19-s + (0.195 − 0.980i)20-s + ⋯ |
L(s) = 1 | + (−0.980 − 0.195i)2-s + (0.555 + 0.831i)3-s + (0.923 + 0.382i)4-s + (−0.195 − 0.980i)5-s + (−0.382 − 0.923i)6-s + (−0.831 − 0.555i)8-s + (−0.382 + 0.923i)9-s + i·10-s + (0.195 + 0.980i)12-s + (0.707 − 0.707i)15-s + (0.707 + 0.707i)16-s + (0.275 + 0.275i)17-s + (0.555 − 0.831i)18-s + (1.63 + 0.324i)19-s + (0.195 − 0.980i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.956 - 0.290i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.956 - 0.290i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7978637997\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7978637997\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.980 + 0.195i)T \) |
| 3 | \( 1 + (-0.555 - 0.831i)T \) |
| 5 | \( 1 + (0.195 + 0.980i)T \) |
good | 7 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 11 | \( 1 + (-0.382 - 0.923i)T^{2} \) |
| 13 | \( 1 + (0.923 + 0.382i)T^{2} \) |
| 17 | \( 1 + (-0.275 - 0.275i)T + iT^{2} \) |
| 19 | \( 1 + (-1.63 - 0.324i)T + (0.923 + 0.382i)T^{2} \) |
| 23 | \( 1 + (-1.81 - 0.750i)T + (0.707 + 0.707i)T^{2} \) |
| 29 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
| 31 | \( 1 + 1.84iT - T^{2} \) |
| 37 | \( 1 + (-0.923 + 0.382i)T^{2} \) |
| 41 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 43 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 47 | \( 1 + (-0.785 - 0.785i)T + iT^{2} \) |
| 53 | \( 1 + (0.636 + 0.425i)T + (0.382 + 0.923i)T^{2} \) |
| 59 | \( 1 + (0.923 - 0.382i)T^{2} \) |
| 61 | \( 1 + (0.923 + 1.38i)T + (-0.382 + 0.923i)T^{2} \) |
| 67 | \( 1 + (0.382 - 0.923i)T^{2} \) |
| 71 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 73 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 79 | \( 1 + (1 - i)T - iT^{2} \) |
| 83 | \( 1 + (0.750 + 0.149i)T + (0.923 + 0.382i)T^{2} \) |
| 89 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.830355363171089486992677814638, −9.488446231581033010177214032296, −8.825289050556513985928721813709, −7.893642125024167756872176641485, −7.45453305709658081889849087604, −5.87660358359649099803992227486, −4.98344910340118423411089077203, −3.79379137017845518994948433391, −2.88382182842019981485235886192, −1.37550894749488483039028189351,
1.25831427561184842027981259474, 2.73920380934427429150708416734, 3.24423136135569436242754514441, 5.25744728013731641641656664934, 6.40000431649447318163284165443, 7.15298692765118034563167672362, 7.45508604780163789903591873857, 8.545308367296151959735496569566, 9.174662474852540780993993240237, 10.09463205852604637222051790477