L(s) = 1 | + (−0.980 − 0.195i)2-s + (0.555 + 0.831i)3-s + (0.923 + 0.382i)4-s + (−0.195 − 0.980i)5-s + (−0.382 − 0.923i)6-s + (−0.831 − 0.555i)8-s + (−0.382 + 0.923i)9-s + i·10-s + (0.195 + 0.980i)12-s + (0.707 − 0.707i)15-s + (0.707 + 0.707i)16-s + (0.275 + 0.275i)17-s + (0.555 − 0.831i)18-s + (1.63 + 0.324i)19-s + (0.195 − 0.980i)20-s + ⋯ |
L(s) = 1 | + (−0.980 − 0.195i)2-s + (0.555 + 0.831i)3-s + (0.923 + 0.382i)4-s + (−0.195 − 0.980i)5-s + (−0.382 − 0.923i)6-s + (−0.831 − 0.555i)8-s + (−0.382 + 0.923i)9-s + i·10-s + (0.195 + 0.980i)12-s + (0.707 − 0.707i)15-s + (0.707 + 0.707i)16-s + (0.275 + 0.275i)17-s + (0.555 − 0.831i)18-s + (1.63 + 0.324i)19-s + (0.195 − 0.980i)20-s + ⋯ |
Λ(s)=(=(960s/2ΓC(s)L(s)(0.956−0.290i)Λ(1−s)
Λ(s)=(=(960s/2ΓC(s)L(s)(0.956−0.290i)Λ(1−s)
Degree: |
2 |
Conductor: |
960
= 26⋅3⋅5
|
Sign: |
0.956−0.290i
|
Analytic conductor: |
0.479102 |
Root analytic conductor: |
0.692172 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ960(749,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 960, ( :0), 0.956−0.290i)
|
Particular Values
L(21) |
≈ |
0.7978637997 |
L(21) |
≈ |
0.7978637997 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.980+0.195i)T |
| 3 | 1+(−0.555−0.831i)T |
| 5 | 1+(0.195+0.980i)T |
good | 7 | 1+(0.707−0.707i)T2 |
| 11 | 1+(−0.382−0.923i)T2 |
| 13 | 1+(0.923+0.382i)T2 |
| 17 | 1+(−0.275−0.275i)T+iT2 |
| 19 | 1+(−1.63−0.324i)T+(0.923+0.382i)T2 |
| 23 | 1+(−1.81−0.750i)T+(0.707+0.707i)T2 |
| 29 | 1+(−0.382+0.923i)T2 |
| 31 | 1+1.84iT−T2 |
| 37 | 1+(−0.923+0.382i)T2 |
| 41 | 1+(−0.707−0.707i)T2 |
| 43 | 1+(0.382+0.923i)T2 |
| 47 | 1+(−0.785−0.785i)T+iT2 |
| 53 | 1+(0.636+0.425i)T+(0.382+0.923i)T2 |
| 59 | 1+(0.923−0.382i)T2 |
| 61 | 1+(0.923+1.38i)T+(−0.382+0.923i)T2 |
| 67 | 1+(0.382−0.923i)T2 |
| 71 | 1+(0.707−0.707i)T2 |
| 73 | 1+(0.707+0.707i)T2 |
| 79 | 1+(1−i)T−iT2 |
| 83 | 1+(0.750+0.149i)T+(0.923+0.382i)T2 |
| 89 | 1+(−0.707+0.707i)T2 |
| 97 | 1+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.830355363171089486992677814638, −9.488446231581033010177214032296, −8.825289050556513985928721813709, −7.893642125024167756872176641485, −7.45453305709658081889849087604, −5.87660358359649099803992227486, −4.98344910340118423411089077203, −3.79379137017845518994948433391, −2.88382182842019981485235886192, −1.37550894749488483039028189351,
1.25831427561184842027981259474, 2.73920380934427429150708416734, 3.24423136135569436242754514441, 5.25744728013731641641656664934, 6.40000431649447318163284165443, 7.15298692765118034563167672362, 7.45508604780163789903591873857, 8.545308367296151959735496569566, 9.174662474852540780993993240237, 10.09463205852604637222051790477