Properties

Label 2-9600-1.1-c1-0-47
Degree $2$
Conductor $9600$
Sign $1$
Analytic cond. $76.6563$
Root an. cond. $8.75536$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s − 2·11-s + 2·13-s + 2·17-s + 4·19-s + 27-s + 2·29-s + 2·31-s − 2·33-s − 6·37-s + 2·39-s − 10·41-s − 8·43-s + 12·47-s − 7·49-s + 2·51-s + 8·53-s + 4·57-s + 10·59-s + 10·61-s + 8·67-s + 4·73-s + 10·79-s + 81-s − 4·83-s + 2·87-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s − 0.603·11-s + 0.554·13-s + 0.485·17-s + 0.917·19-s + 0.192·27-s + 0.371·29-s + 0.359·31-s − 0.348·33-s − 0.986·37-s + 0.320·39-s − 1.56·41-s − 1.21·43-s + 1.75·47-s − 49-s + 0.280·51-s + 1.09·53-s + 0.529·57-s + 1.30·59-s + 1.28·61-s + 0.977·67-s + 0.468·73-s + 1.12·79-s + 1/9·81-s − 0.439·83-s + 0.214·87-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9600\)    =    \(2^{7} \cdot 3 \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(76.6563\)
Root analytic conductor: \(8.75536\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9600,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.714702069\)
\(L(\frac12)\) \(\approx\) \(2.714702069\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
good7 \( 1 + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 + 10 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 - 8 T + p T^{2} \)
59 \( 1 - 10 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 4 T + p T^{2} \)
79 \( 1 - 10 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.80368263810299683917762403250, −7.00662433002893786454181174893, −6.51440912683925255312701384289, −5.35833765571113529985517799135, −5.17337443675784408279497440993, −3.98204680449840151604539006084, −3.43337946589437071246516023518, −2.67743472317963424891594825907, −1.78206082006120931600636517156, −0.77784287161905984840430610839, 0.77784287161905984840430610839, 1.78206082006120931600636517156, 2.67743472317963424891594825907, 3.43337946589437071246516023518, 3.98204680449840151604539006084, 5.17337443675784408279497440993, 5.35833765571113529985517799135, 6.51440912683925255312701384289, 7.00662433002893786454181174893, 7.80368263810299683917762403250

Graph of the $Z$-function along the critical line