Properties

Label 2-9610-1.1-c1-0-100
Degree $2$
Conductor $9610$
Sign $-1$
Analytic cond. $76.7362$
Root an. cond. $8.75992$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2.61·3-s + 4-s − 5-s + 2.61·6-s + 2.75·7-s − 8-s + 3.85·9-s + 10-s − 5.50·11-s − 2.61·12-s − 5.53·13-s − 2.75·14-s + 2.61·15-s + 16-s − 1.82·17-s − 3.85·18-s − 3.92·19-s − 20-s − 7.21·21-s + 5.50·22-s + 6.55·23-s + 2.61·24-s + 25-s + 5.53·26-s − 2.23·27-s + 2.75·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.51·3-s + 0.5·4-s − 0.447·5-s + 1.06·6-s + 1.04·7-s − 0.353·8-s + 1.28·9-s + 0.316·10-s − 1.65·11-s − 0.755·12-s − 1.53·13-s − 0.736·14-s + 0.675·15-s + 0.250·16-s − 0.443·17-s − 0.908·18-s − 0.899·19-s − 0.223·20-s − 1.57·21-s + 1.17·22-s + 1.36·23-s + 0.534·24-s + 0.200·25-s + 1.08·26-s − 0.430·27-s + 0.520·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9610 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9610 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9610\)    =    \(2 \cdot 5 \cdot 31^{2}\)
Sign: $-1$
Analytic conductor: \(76.7362\)
Root analytic conductor: \(8.75992\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9610,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
5 \( 1 + T \)
31 \( 1 \)
good3 \( 1 + 2.61T + 3T^{2} \)
7 \( 1 - 2.75T + 7T^{2} \)
11 \( 1 + 5.50T + 11T^{2} \)
13 \( 1 + 5.53T + 13T^{2} \)
17 \( 1 + 1.82T + 17T^{2} \)
19 \( 1 + 3.92T + 19T^{2} \)
23 \( 1 - 6.55T + 23T^{2} \)
29 \( 1 + 6.20T + 29T^{2} \)
37 \( 1 + 6.89T + 37T^{2} \)
41 \( 1 - 11.3T + 41T^{2} \)
43 \( 1 - 5.02T + 43T^{2} \)
47 \( 1 - 3.27T + 47T^{2} \)
53 \( 1 - 3.77T + 53T^{2} \)
59 \( 1 - 1.32T + 59T^{2} \)
61 \( 1 - 13.2T + 61T^{2} \)
67 \( 1 - 10.4T + 67T^{2} \)
71 \( 1 + 2.30T + 71T^{2} \)
73 \( 1 + 6.37T + 73T^{2} \)
79 \( 1 - 14.3T + 79T^{2} \)
83 \( 1 + 6.53T + 83T^{2} \)
89 \( 1 + 0.654T + 89T^{2} \)
97 \( 1 + 3.09T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.28328192695994518275405206954, −6.94170997499117608438663318677, −5.87217143299941812752276489776, −5.18300143772428945905137809244, −4.95037502641527639899289999546, −4.09899399613640469832903910292, −2.66991120431015712459335874288, −2.07351113283968610525022193160, −0.77252739109737169480148270696, 0, 0.77252739109737169480148270696, 2.07351113283968610525022193160, 2.66991120431015712459335874288, 4.09899399613640469832903910292, 4.95037502641527639899289999546, 5.18300143772428945905137809244, 5.87217143299941812752276489776, 6.94170997499117608438663318677, 7.28328192695994518275405206954

Graph of the $Z$-function along the critical line