Properties

Label 2-9610-1.1-c1-0-108
Degree $2$
Conductor $9610$
Sign $1$
Analytic cond. $76.7362$
Root an. cond. $8.75992$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 0.842·3-s + 4-s + 5-s + 0.842·6-s − 3.49·7-s − 8-s − 2.28·9-s − 10-s + 3.53·11-s − 0.842·12-s + 5.00·13-s + 3.49·14-s − 0.842·15-s + 16-s + 7.60·17-s + 2.28·18-s + 2.42·19-s + 20-s + 2.94·21-s − 3.53·22-s + 3.71·23-s + 0.842·24-s + 25-s − 5.00·26-s + 4.45·27-s − 3.49·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.486·3-s + 0.5·4-s + 0.447·5-s + 0.344·6-s − 1.32·7-s − 0.353·8-s − 0.763·9-s − 0.316·10-s + 1.06·11-s − 0.243·12-s + 1.38·13-s + 0.934·14-s − 0.217·15-s + 0.250·16-s + 1.84·17-s + 0.539·18-s + 0.555·19-s + 0.223·20-s + 0.642·21-s − 0.753·22-s + 0.774·23-s + 0.172·24-s + 0.200·25-s − 0.981·26-s + 0.858·27-s − 0.660·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9610 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9610 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9610\)    =    \(2 \cdot 5 \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(76.7362\)
Root analytic conductor: \(8.75992\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9610,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.510322068\)
\(L(\frac12)\) \(\approx\) \(1.510322068\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
5 \( 1 - T \)
31 \( 1 \)
good3 \( 1 + 0.842T + 3T^{2} \)
7 \( 1 + 3.49T + 7T^{2} \)
11 \( 1 - 3.53T + 11T^{2} \)
13 \( 1 - 5.00T + 13T^{2} \)
17 \( 1 - 7.60T + 17T^{2} \)
19 \( 1 - 2.42T + 19T^{2} \)
23 \( 1 - 3.71T + 23T^{2} \)
29 \( 1 - 5.29T + 29T^{2} \)
37 \( 1 - 7.63T + 37T^{2} \)
41 \( 1 - 1.29T + 41T^{2} \)
43 \( 1 - 6.10T + 43T^{2} \)
47 \( 1 + 1.84T + 47T^{2} \)
53 \( 1 + 5.89T + 53T^{2} \)
59 \( 1 - 1.43T + 59T^{2} \)
61 \( 1 + 0.677T + 61T^{2} \)
67 \( 1 - 11.8T + 67T^{2} \)
71 \( 1 - 10.7T + 71T^{2} \)
73 \( 1 + 12.4T + 73T^{2} \)
79 \( 1 - 15.8T + 79T^{2} \)
83 \( 1 - 3.79T + 83T^{2} \)
89 \( 1 + 5.68T + 89T^{2} \)
97 \( 1 + 19.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.78957396263714871981229769803, −6.70029692133797155082980798556, −6.46055988117906385518742895883, −5.82317765053559738305825363158, −5.30547774178361623032968042353, −3.97114132432287923464874474046, −3.24559010578878375448346495319, −2.75017855089729142635295534388, −1.24897463585319302123532805514, −0.799389987061897996982084649734, 0.799389987061897996982084649734, 1.24897463585319302123532805514, 2.75017855089729142635295534388, 3.24559010578878375448346495319, 3.97114132432287923464874474046, 5.30547774178361623032968042353, 5.82317765053559738305825363158, 6.46055988117906385518742895883, 6.70029692133797155082980798556, 7.78957396263714871981229769803

Graph of the $Z$-function along the critical line