Properties

Label 2-9610-1.1-c1-0-123
Degree $2$
Conductor $9610$
Sign $1$
Analytic cond. $76.7362$
Root an. cond. $8.75992$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 0.806·3-s + 4-s + 5-s − 0.806·6-s + 3.35·7-s + 8-s − 2.35·9-s + 10-s + 3.76·11-s − 0.806·12-s + 2.80·13-s + 3.35·14-s − 0.806·15-s + 16-s − 3.35·17-s − 2.35·18-s − 4.31·19-s + 20-s − 2.70·21-s + 3.76·22-s − 2.96·23-s − 0.806·24-s + 25-s + 2.80·26-s + 4.31·27-s + 3.35·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.465·3-s + 0.5·4-s + 0.447·5-s − 0.329·6-s + 1.26·7-s + 0.353·8-s − 0.783·9-s + 0.316·10-s + 1.13·11-s − 0.232·12-s + 0.778·13-s + 0.895·14-s − 0.208·15-s + 0.250·16-s − 0.812·17-s − 0.553·18-s − 0.989·19-s + 0.223·20-s − 0.589·21-s + 0.803·22-s − 0.617·23-s − 0.164·24-s + 0.200·25-s + 0.550·26-s + 0.829·27-s + 0.633·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9610 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9610 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9610\)    =    \(2 \cdot 5 \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(76.7362\)
Root analytic conductor: \(8.75992\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9610,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.747559077\)
\(L(\frac12)\) \(\approx\) \(3.747559077\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 - T \)
31 \( 1 \)
good3 \( 1 + 0.806T + 3T^{2} \)
7 \( 1 - 3.35T + 7T^{2} \)
11 \( 1 - 3.76T + 11T^{2} \)
13 \( 1 - 2.80T + 13T^{2} \)
17 \( 1 + 3.35T + 17T^{2} \)
19 \( 1 + 4.31T + 19T^{2} \)
23 \( 1 + 2.96T + 23T^{2} \)
29 \( 1 + 10.0T + 29T^{2} \)
37 \( 1 - 9.50T + 37T^{2} \)
41 \( 1 + 11.2T + 41T^{2} \)
43 \( 1 - 9.89T + 43T^{2} \)
47 \( 1 - 10.5T + 47T^{2} \)
53 \( 1 - 13.5T + 53T^{2} \)
59 \( 1 - 6.38T + 59T^{2} \)
61 \( 1 - 2.23T + 61T^{2} \)
67 \( 1 - 10.2T + 67T^{2} \)
71 \( 1 - 9.92T + 71T^{2} \)
73 \( 1 + 3.66T + 73T^{2} \)
79 \( 1 - 0.836T + 79T^{2} \)
83 \( 1 - 3.50T + 83T^{2} \)
89 \( 1 - 0.700T + 89T^{2} \)
97 \( 1 + 0.261T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.56214294797396885228353161567, −6.77048391724320089428038743034, −6.12359844407092522185842510973, −5.68402130746476528739352929859, −5.01592476748687956900935302678, −4.11150344743603411285596815954, −3.81653820056869084393550526666, −2.40372040971154992956142397753, −1.92308993338408618808627260183, −0.868796913384187607581816268855, 0.868796913384187607581816268855, 1.92308993338408618808627260183, 2.40372040971154992956142397753, 3.81653820056869084393550526666, 4.11150344743603411285596815954, 5.01592476748687956900935302678, 5.68402130746476528739352929859, 6.12359844407092522185842510973, 6.77048391724320089428038743034, 7.56214294797396885228353161567

Graph of the $Z$-function along the critical line