Properties

Label 2-9610-1.1-c1-0-131
Degree $2$
Conductor $9610$
Sign $-1$
Analytic cond. $76.7362$
Root an. cond. $8.75992$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3.00·3-s + 4-s − 5-s − 3.00·6-s − 4.97·7-s + 8-s + 6.02·9-s − 10-s + 3.30·11-s − 3.00·12-s − 1.23·13-s − 4.97·14-s + 3.00·15-s + 16-s + 0.120·17-s + 6.02·18-s − 0.808·19-s − 20-s + 14.9·21-s + 3.30·22-s − 2.58·23-s − 3.00·24-s + 25-s − 1.23·26-s − 9.10·27-s − 4.97·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.73·3-s + 0.5·4-s − 0.447·5-s − 1.22·6-s − 1.87·7-s + 0.353·8-s + 2.00·9-s − 0.316·10-s + 0.996·11-s − 0.867·12-s − 0.342·13-s − 1.32·14-s + 0.775·15-s + 0.250·16-s + 0.0291·17-s + 1.42·18-s − 0.185·19-s − 0.223·20-s + 3.25·21-s + 0.704·22-s − 0.538·23-s − 0.613·24-s + 0.200·25-s − 0.241·26-s − 1.75·27-s − 0.939·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9610 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9610 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9610\)    =    \(2 \cdot 5 \cdot 31^{2}\)
Sign: $-1$
Analytic conductor: \(76.7362\)
Root analytic conductor: \(8.75992\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9610,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 + T \)
31 \( 1 \)
good3 \( 1 + 3.00T + 3T^{2} \)
7 \( 1 + 4.97T + 7T^{2} \)
11 \( 1 - 3.30T + 11T^{2} \)
13 \( 1 + 1.23T + 13T^{2} \)
17 \( 1 - 0.120T + 17T^{2} \)
19 \( 1 + 0.808T + 19T^{2} \)
23 \( 1 + 2.58T + 23T^{2} \)
29 \( 1 + 6.45T + 29T^{2} \)
37 \( 1 + 7.73T + 37T^{2} \)
41 \( 1 - 7.10T + 41T^{2} \)
43 \( 1 - 8.22T + 43T^{2} \)
47 \( 1 - 8.05T + 47T^{2} \)
53 \( 1 + 11.3T + 53T^{2} \)
59 \( 1 - 10.7T + 59T^{2} \)
61 \( 1 - 3.94T + 61T^{2} \)
67 \( 1 - 6.18T + 67T^{2} \)
71 \( 1 + 12.1T + 71T^{2} \)
73 \( 1 + 15.4T + 73T^{2} \)
79 \( 1 - 7.04T + 79T^{2} \)
83 \( 1 - 16.0T + 83T^{2} \)
89 \( 1 - 0.192T + 89T^{2} \)
97 \( 1 + 0.524T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.21316219108713315586915595057, −6.31486853810556517363592972684, −6.10133990743062433474410812894, −5.47691701910756337640826538465, −4.56044260317381771453618874627, −3.90957542008878370141402769449, −3.41286057726828707213503993903, −2.21242265543829106746702642995, −0.902410103192641493725828876630, 0, 0.902410103192641493725828876630, 2.21242265543829106746702642995, 3.41286057726828707213503993903, 3.90957542008878370141402769449, 4.56044260317381771453618874627, 5.47691701910756337640826538465, 6.10133990743062433474410812894, 6.31486853810556517363592972684, 7.21316219108713315586915595057

Graph of the $Z$-function along the critical line