Properties

Label 2-9610-1.1-c1-0-132
Degree $2$
Conductor $9610$
Sign $-1$
Analytic cond. $76.7362$
Root an. cond. $8.75992$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 1.84·3-s + 4-s − 5-s − 1.84·6-s − 5.01·7-s + 8-s + 0.414·9-s − 10-s − 4.69·11-s − 1.84·12-s + 3.83·13-s − 5.01·14-s + 1.84·15-s + 16-s − 5.78·17-s + 0.414·18-s + 5.19·19-s − 20-s + 9.25·21-s − 4.69·22-s + 6.40·23-s − 1.84·24-s + 25-s + 3.83·26-s + 4.77·27-s − 5.01·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.06·3-s + 0.5·4-s − 0.447·5-s − 0.754·6-s − 1.89·7-s + 0.353·8-s + 0.138·9-s − 0.316·10-s − 1.41·11-s − 0.533·12-s + 1.06·13-s − 1.33·14-s + 0.477·15-s + 0.250·16-s − 1.40·17-s + 0.0976·18-s + 1.19·19-s − 0.223·20-s + 2.02·21-s − 1.00·22-s + 1.33·23-s − 0.377·24-s + 0.200·25-s + 0.752·26-s + 0.919·27-s − 0.946·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9610 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9610 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9610\)    =    \(2 \cdot 5 \cdot 31^{2}\)
Sign: $-1$
Analytic conductor: \(76.7362\)
Root analytic conductor: \(8.75992\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9610,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 + T \)
31 \( 1 \)
good3 \( 1 + 1.84T + 3T^{2} \)
7 \( 1 + 5.01T + 7T^{2} \)
11 \( 1 + 4.69T + 11T^{2} \)
13 \( 1 - 3.83T + 13T^{2} \)
17 \( 1 + 5.78T + 17T^{2} \)
19 \( 1 - 5.19T + 19T^{2} \)
23 \( 1 - 6.40T + 23T^{2} \)
29 \( 1 - 5.01T + 29T^{2} \)
37 \( 1 - 1.86T + 37T^{2} \)
41 \( 1 + 7.74T + 41T^{2} \)
43 \( 1 - 0.904T + 43T^{2} \)
47 \( 1 - 0.257T + 47T^{2} \)
53 \( 1 + 3.83T + 53T^{2} \)
59 \( 1 - 4.16T + 59T^{2} \)
61 \( 1 + 2.99T + 61T^{2} \)
67 \( 1 + 1.92T + 67T^{2} \)
71 \( 1 + 5.17T + 71T^{2} \)
73 \( 1 + 1.17T + 73T^{2} \)
79 \( 1 - 14.8T + 79T^{2} \)
83 \( 1 - 14.9T + 83T^{2} \)
89 \( 1 - 13.5T + 89T^{2} \)
97 \( 1 + 8.36T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.94537774491825474321855022161, −6.53398540560926640410736908268, −6.04360775327742847174187576290, −5.24068476672548678858500091700, −4.81688824701845601627966015169, −3.75064038521084321737536799683, −3.10447262354289391171114300363, −2.58824464373040444120139441430, −0.903409693238353169384284592919, 0, 0.903409693238353169384284592919, 2.58824464373040444120139441430, 3.10447262354289391171114300363, 3.75064038521084321737536799683, 4.81688824701845601627966015169, 5.24068476672548678858500091700, 6.04360775327742847174187576290, 6.53398540560926640410736908268, 6.94537774491825474321855022161

Graph of the $Z$-function along the critical line