Properties

Label 2-9610-1.1-c1-0-135
Degree $2$
Conductor $9610$
Sign $-1$
Analytic cond. $76.7362$
Root an. cond. $8.75992$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2.89·3-s + 4-s − 5-s − 2.89·6-s − 2.11·7-s + 8-s + 5.35·9-s − 10-s − 4.11·11-s − 2.89·12-s − 4.31·13-s − 2.11·14-s + 2.89·15-s + 16-s + 3.02·17-s + 5.35·18-s + 4.72·19-s − 20-s + 6.10·21-s − 4.11·22-s − 0.00467·23-s − 2.89·24-s + 25-s − 4.31·26-s − 6.82·27-s − 2.11·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.66·3-s + 0.5·4-s − 0.447·5-s − 1.18·6-s − 0.798·7-s + 0.353·8-s + 1.78·9-s − 0.316·10-s − 1.23·11-s − 0.834·12-s − 1.19·13-s − 0.564·14-s + 0.746·15-s + 0.250·16-s + 0.733·17-s + 1.26·18-s + 1.08·19-s − 0.223·20-s + 1.33·21-s − 0.876·22-s − 0.000975·23-s − 0.590·24-s + 0.200·25-s − 0.847·26-s − 1.31·27-s − 0.399·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9610 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9610 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9610\)    =    \(2 \cdot 5 \cdot 31^{2}\)
Sign: $-1$
Analytic conductor: \(76.7362\)
Root analytic conductor: \(8.75992\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9610,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 + T \)
31 \( 1 \)
good3 \( 1 + 2.89T + 3T^{2} \)
7 \( 1 + 2.11T + 7T^{2} \)
11 \( 1 + 4.11T + 11T^{2} \)
13 \( 1 + 4.31T + 13T^{2} \)
17 \( 1 - 3.02T + 17T^{2} \)
19 \( 1 - 4.72T + 19T^{2} \)
23 \( 1 + 0.00467T + 23T^{2} \)
29 \( 1 - 1.88T + 29T^{2} \)
37 \( 1 + 9.55T + 37T^{2} \)
41 \( 1 + 7.99T + 41T^{2} \)
43 \( 1 - 4.41T + 43T^{2} \)
47 \( 1 - 10.2T + 47T^{2} \)
53 \( 1 - 11.0T + 53T^{2} \)
59 \( 1 - 5.96T + 59T^{2} \)
61 \( 1 - 6.12T + 61T^{2} \)
67 \( 1 - 4.49T + 67T^{2} \)
71 \( 1 - 15.2T + 71T^{2} \)
73 \( 1 + 3.10T + 73T^{2} \)
79 \( 1 + 14.4T + 79T^{2} \)
83 \( 1 - 0.441T + 83T^{2} \)
89 \( 1 - 13.9T + 89T^{2} \)
97 \( 1 + 11.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.16075931906780517783877200399, −6.63947685966842697939075182689, −5.67244546024341603595209532851, −5.31663936143274958330977985734, −4.91982015632868747913061851209, −3.95461763962278681239527617394, −3.17589448021604894736152101233, −2.31742079036287802333179836799, −0.908056910352997855281189561970, 0, 0.908056910352997855281189561970, 2.31742079036287802333179836799, 3.17589448021604894736152101233, 3.95461763962278681239527617394, 4.91982015632868747913061851209, 5.31663936143274958330977985734, 5.67244546024341603595209532851, 6.63947685966842697939075182689, 7.16075931906780517783877200399

Graph of the $Z$-function along the critical line