Properties

Label 2-9610-1.1-c1-0-137
Degree $2$
Conductor $9610$
Sign $1$
Analytic cond. $76.7362$
Root an. cond. $8.75992$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 0.648·3-s + 4-s + 5-s + 0.648·6-s + 2.28·7-s + 8-s − 2.57·9-s + 10-s − 2.02·11-s + 0.648·12-s − 0.331·13-s + 2.28·14-s + 0.648·15-s + 16-s + 4.82·17-s − 2.57·18-s + 1.78·19-s + 20-s + 1.48·21-s − 2.02·22-s − 0.804·23-s + 0.648·24-s + 25-s − 0.331·26-s − 3.61·27-s + 2.28·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.374·3-s + 0.5·4-s + 0.447·5-s + 0.264·6-s + 0.862·7-s + 0.353·8-s − 0.859·9-s + 0.316·10-s − 0.611·11-s + 0.187·12-s − 0.0920·13-s + 0.609·14-s + 0.167·15-s + 0.250·16-s + 1.17·17-s − 0.607·18-s + 0.409·19-s + 0.223·20-s + 0.323·21-s − 0.432·22-s − 0.167·23-s + 0.132·24-s + 0.200·25-s − 0.0650·26-s − 0.696·27-s + 0.431·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9610 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9610 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9610\)    =    \(2 \cdot 5 \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(76.7362\)
Root analytic conductor: \(8.75992\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9610,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.576071233\)
\(L(\frac12)\) \(\approx\) \(4.576071233\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 - T \)
31 \( 1 \)
good3 \( 1 - 0.648T + 3T^{2} \)
7 \( 1 - 2.28T + 7T^{2} \)
11 \( 1 + 2.02T + 11T^{2} \)
13 \( 1 + 0.331T + 13T^{2} \)
17 \( 1 - 4.82T + 17T^{2} \)
19 \( 1 - 1.78T + 19T^{2} \)
23 \( 1 + 0.804T + 23T^{2} \)
29 \( 1 + 4.48T + 29T^{2} \)
37 \( 1 - 7.59T + 37T^{2} \)
41 \( 1 - 6.39T + 41T^{2} \)
43 \( 1 + 3.68T + 43T^{2} \)
47 \( 1 - 4.32T + 47T^{2} \)
53 \( 1 - 5.16T + 53T^{2} \)
59 \( 1 - 10.2T + 59T^{2} \)
61 \( 1 - 3.82T + 61T^{2} \)
67 \( 1 - 14.4T + 67T^{2} \)
71 \( 1 + 2.21T + 71T^{2} \)
73 \( 1 - 2.52T + 73T^{2} \)
79 \( 1 + 3.73T + 79T^{2} \)
83 \( 1 - 0.932T + 83T^{2} \)
89 \( 1 + 10.1T + 89T^{2} \)
97 \( 1 - 5.37T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.80926527384127739818010945745, −7.04600789480001651288319291896, −6.05535854706660892562689490670, −5.48799902783416164884395271891, −5.15142503493575056952035274651, −4.17185361588902754878857897270, −3.40334307331207072806261043623, −2.61872200335748288061085664511, −2.03072927460009895544116112077, −0.909275180967742070968592821220, 0.909275180967742070968592821220, 2.03072927460009895544116112077, 2.61872200335748288061085664511, 3.40334307331207072806261043623, 4.17185361588902754878857897270, 5.15142503493575056952035274651, 5.48799902783416164884395271891, 6.05535854706660892562689490670, 7.04600789480001651288319291896, 7.80926527384127739818010945745

Graph of the $Z$-function along the critical line