L(s) = 1 | + 2-s + 3-s + 4-s + 3·5-s + 6-s − 7-s + 8-s + 9-s + 3·10-s + 4·11-s + 12-s − 3·13-s − 14-s + 3·15-s + 16-s − 4·17-s + 18-s + 3·20-s − 21-s + 4·22-s + 23-s + 24-s + 4·25-s − 3·26-s + 27-s − 28-s + 3·29-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 1/2·4-s + 1.34·5-s + 0.408·6-s − 0.377·7-s + 0.353·8-s + 1/3·9-s + 0.948·10-s + 1.20·11-s + 0.288·12-s − 0.832·13-s − 0.267·14-s + 0.774·15-s + 1/4·16-s − 0.970·17-s + 0.235·18-s + 0.670·20-s − 0.218·21-s + 0.852·22-s + 0.208·23-s + 0.204·24-s + 4/5·25-s − 0.588·26-s + 0.192·27-s − 0.188·28-s + 0.557·29-s + ⋯ |
Λ(s)=(=(966s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(966s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.593527008 |
L(21) |
≈ |
3.593527008 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1−T |
| 7 | 1+T |
| 23 | 1−T |
good | 5 | 1−3T+pT2 |
| 11 | 1−4T+pT2 |
| 13 | 1+3T+pT2 |
| 17 | 1+4T+pT2 |
| 19 | 1+pT2 |
| 29 | 1−3T+pT2 |
| 31 | 1+6T+pT2 |
| 37 | 1+9T+pT2 |
| 41 | 1−9T+pT2 |
| 43 | 1+3T+pT2 |
| 47 | 1+7T+pT2 |
| 53 | 1+4T+pT2 |
| 59 | 1−6T+pT2 |
| 61 | 1−10T+pT2 |
| 67 | 1−4T+pT2 |
| 71 | 1+6T+pT2 |
| 73 | 1+8T+pT2 |
| 79 | 1−8T+pT2 |
| 83 | 1−4T+pT2 |
| 89 | 1+14T+pT2 |
| 97 | 1+7T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.843827071515005252615180187856, −9.345059082219016767573214421285, −8.533329024037475026270064025246, −7.11624966976560567011680890410, −6.61433587019532483612650095921, −5.70303300160941996822497347087, −4.72846979566270558944303333386, −3.67780852772662808140519843755, −2.54506917140467324126940654920, −1.68100316040744687359155389371,
1.68100316040744687359155389371, 2.54506917140467324126940654920, 3.67780852772662808140519843755, 4.72846979566270558944303333386, 5.70303300160941996822497347087, 6.61433587019532483612650095921, 7.11624966976560567011680890410, 8.533329024037475026270064025246, 9.345059082219016767573214421285, 9.843827071515005252615180187856