Properties

Label 2-966-1.1-c1-0-6
Degree $2$
Conductor $966$
Sign $1$
Analytic cond. $7.71354$
Root an. cond. $2.77732$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 6-s + 7-s − 8-s + 9-s + 6·11-s + 12-s + 2·13-s − 14-s + 16-s − 6·17-s − 18-s + 2·19-s + 21-s − 6·22-s + 23-s − 24-s − 5·25-s − 2·26-s + 27-s + 28-s − 6·29-s + 8·31-s − 32-s + 6·33-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.408·6-s + 0.377·7-s − 0.353·8-s + 1/3·9-s + 1.80·11-s + 0.288·12-s + 0.554·13-s − 0.267·14-s + 1/4·16-s − 1.45·17-s − 0.235·18-s + 0.458·19-s + 0.218·21-s − 1.27·22-s + 0.208·23-s − 0.204·24-s − 25-s − 0.392·26-s + 0.192·27-s + 0.188·28-s − 1.11·29-s + 1.43·31-s − 0.176·32-s + 1.04·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(966\)    =    \(2 \cdot 3 \cdot 7 \cdot 23\)
Sign: $1$
Analytic conductor: \(7.71354\)
Root analytic conductor: \(2.77732\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 966,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.633116936\)
\(L(\frac12)\) \(\approx\) \(1.633116936\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 - T \)
7 \( 1 - T \)
23 \( 1 - T \)
good5 \( 1 + p T^{2} \)
11 \( 1 - 6 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 - 8 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 2 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 12 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 8 T + p T^{2} \)
67 \( 1 + 10 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.551879157003533670443999529649, −9.326791696013578560676280568052, −8.446718419123634224742538482321, −7.69912362113235286850265561333, −6.69924943503066031429063443018, −6.06776536207787590443613911254, −4.48140712011520856643820717997, −3.67993242300982530617744400082, −2.29445795919165996609896965567, −1.20369719133842088894251925117, 1.20369719133842088894251925117, 2.29445795919165996609896965567, 3.67993242300982530617744400082, 4.48140712011520856643820717997, 6.06776536207787590443613911254, 6.69924943503066031429063443018, 7.69912362113235286850265561333, 8.446718419123634224742538482321, 9.326791696013578560676280568052, 9.551879157003533670443999529649

Graph of the $Z$-function along the critical line