L(s) = 1 | − 2-s + 3-s + 4-s − 6-s + 7-s − 8-s + 9-s + 6·11-s + 12-s + 2·13-s − 14-s + 16-s − 6·17-s − 18-s + 2·19-s + 21-s − 6·22-s + 23-s − 24-s − 5·25-s − 2·26-s + 27-s + 28-s − 6·29-s + 8·31-s − 32-s + 6·33-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.408·6-s + 0.377·7-s − 0.353·8-s + 1/3·9-s + 1.80·11-s + 0.288·12-s + 0.554·13-s − 0.267·14-s + 1/4·16-s − 1.45·17-s − 0.235·18-s + 0.458·19-s + 0.218·21-s − 1.27·22-s + 0.208·23-s − 0.204·24-s − 25-s − 0.392·26-s + 0.192·27-s + 0.188·28-s − 1.11·29-s + 1.43·31-s − 0.176·32-s + 1.04·33-s + ⋯ |
Λ(s)=(=(966s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(966s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.633116936 |
L(21) |
≈ |
1.633116936 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1−T |
| 7 | 1−T |
| 23 | 1−T |
good | 5 | 1+pT2 |
| 11 | 1−6T+pT2 |
| 13 | 1−2T+pT2 |
| 17 | 1+6T+pT2 |
| 19 | 1−2T+pT2 |
| 29 | 1+6T+pT2 |
| 31 | 1−8T+pT2 |
| 37 | 1−8T+pT2 |
| 41 | 1−6T+pT2 |
| 43 | 1−2T+pT2 |
| 47 | 1+pT2 |
| 53 | 1+12T+pT2 |
| 59 | 1+pT2 |
| 61 | 1−8T+pT2 |
| 67 | 1+10T+pT2 |
| 71 | 1+pT2 |
| 73 | 1−14T+pT2 |
| 79 | 1−8T+pT2 |
| 83 | 1−6T+pT2 |
| 89 | 1−6T+pT2 |
| 97 | 1+10T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.551879157003533670443999529649, −9.326791696013578560676280568052, −8.446718419123634224742538482321, −7.69912362113235286850265561333, −6.69924943503066031429063443018, −6.06776536207787590443613911254, −4.48140712011520856643820717997, −3.67993242300982530617744400082, −2.29445795919165996609896965567, −1.20369719133842088894251925117,
1.20369719133842088894251925117, 2.29445795919165996609896965567, 3.67993242300982530617744400082, 4.48140712011520856643820717997, 6.06776536207787590443613911254, 6.69924943503066031429063443018, 7.69912362113235286850265561333, 8.446718419123634224742538482321, 9.326791696013578560676280568052, 9.551879157003533670443999529649